Affordable Proof Shipping, now worldwide.

Proof GmbH has now even more attractive shipping terms for domestic and international shipping. In addition, proofs can now be sent via Express and standard shipping worldwide.

Throughout Germany shipping costs for packages from Proof A3 were reduced to only 9,-€.

In international shipping, costs were partially reduced by almost 50%. Proofs can now be sent quickly and conveniently wordwide. shipping costs and options are directly calculated in the shop so that a quick and direct proof order is possible. Express delivery in the EU is now from 35, – €, Switzerland and the United States from only 45, – €. Even for Afghanistan and Nigeria, shipping costs for DIN A0 proofs are only 75, – €.  In international express, delivery time is between one to four days…

The exact prices and per country can be seen here:

Countries and shipping cost for proofing on

Please note: Express delivery and standard delivery to countries in located in different shipping zones. So the standard shipping in the US through DHL is nearly as “expensive”, as the express delivery. So express delivery for only 10 Euro more certainly is the more attractive option for time-critical goods such proofs.

Related Posts

Is a proof possible on special paper such as publication paper?

“We print 135gr/sqm on a Berberich Allegro. Can you make us a proof on this paper? Can you proof on our final publication paper?”

Our telephone support often asks for a proof on publication paper. Unfortunately, we always have to answer the question negatively. I would like to briefly explain the reasons for this in the following article.

Proofing on publication paper is still technically impossible.

All proofing systems currently certified by Fogra are based on an inkjet printer as a test printer, mostly from Epson, Canon or HP. These printers are characterised by a large colour space, good resolution and excellent homogeneity and colour stability – all characteristics that are absolutely necessary for a proof printing system. The Epson systems used by the majority of proof printers are based on 11-colour pigment inks, which can reproduce a significantly larger colour space than e.g. ISOCoatedV2. However, the prerequisite for this is the use of special papers optimized for inkjet printing, in which the pigments and inks are optimally emphasized. This requires special coatings that are optimized for optimum reproduction, fast drying, good abrasion resistance and high UV stability of the print. On an image printing paper without these coatings, the ink would run, hardly dry and would not be smudge-proof. The color space would also be impossible to achieve. A proof would therefore not be possible from this point of view.

Stamp once on a coated printing paper. You can easily wipe off the stamping ink even after many days. The situation is similar with inkjet inks. And even colour laser printers are no solution. The toner applied to the paper in these systems and then liquefied by heat to bond with the paper cannot penetrate the closed coated surfaces. This means that the print is not fused and the toner can be wiped off the surface directly after printing.

Modern digital printing systems such as the iGen from Xerox are also capable of neatly mapping color spaces such as ISOCoatedV2. Some of these systems are also able to print offset papers properly, although here too special papers optimized for digital printing are used. However, despite major improvements in recent years, these digital printing systems are still not capable of reproducing the small color deviations required for a true color-accurate proof, a “contract proof in accordance with ISO 12647-7”. Even after a complete recalibration and re-profiling on the paper used, these systems only achieve “Validation Print” quality according to ISO 12647-8.

“Validation Prints” are not “contract proofs”, they are not color-binding and not legally binding, since the permissible color deviations of Validation Prints may be significantly higher than those of real proofs. The result would therefore only be a “print”, which is not binding for a print shop as a result, not “color-binding” but only “colored goods”. And it is precisely this commitment that must be achieved with a proof. In addition, the color stability of these systems is predominantly so critical that even with a new profiling in the morning in the afternoon, even the lax validation print tolerances can no longer be achieved and the system again has to be recalibrated and profiled.

The only solution: the classic proof. If it wasn’t for the cost.

Here, real offset printing with real colours produces the real print later in an edition of one piece. Since the proof is printed in real offset printing, production paper can also be used here without any problems. The downside? The price. Depending on the format, a proof on circulation paper costs several hundred euros. Since press proofs are still predominantly film-based printed today, but the real printing is usually via computer-to-plate printing plates, there is no 100% precision of the press proof for the production print today either. CTP is also available from proofing companies, but at an even higher cost. A little postcard, a slim fanfold? This is not economically viable in proof printing.

So don’t use circulation paper for shorter print runs. Especially with ISOCoatedV2, a classic proof offers you true color accuracy and stability at very low costs. Just lay the cover paper next to it. We are sure that this is the best way for you to imagine what the subsequent printing will look like, in the “most colour-accurate” and also at the best price. And in comparison to Validation Print digital printing, it is legally binding and binding in colour.

Related Posts

New packaging at has introduced new packaging for proofs up to DIN A4+ and from A3.

The new A4+ packaging are made of high quality Chromosulfatcardboard with 450gr/m² weight and provided with a pull tab. They can be fitted on the front either with an adress label and postage stamp or for express shipments with a DHL Express label, as shown in the picture below. For shipping abroad we use to send via world letter large with registered mail, which is now directly printed as an adress label with stamp.

Die neuen Proof Verpackungen von Ab sofort sind Ihre Proofs noch besser geschützt.

The new cardboard shipping sleeves are slightly slimmer than before and also provided with a comfortable pull-tab. The new address labels are easy to recognize as of For the different formats between Proof DIN A3 and DIN A0 + they are available in various lengths and are each used appropriately according Proof size. They are used with DHL shipping labels for the standard shipping and express delivery.

Continue reading

Create EAN / GTIN codes: Tips for graphic artists

EAN codes are standard on every product today. While in the good old days, shopowners themselves typed the prices into a cash register by hand, today scanner cash registers are the rule, which scan standardized EAN codes with a laser and thus clearly recognize the article and add it to the receipt.

EAN, by the way, stands for “European Article Number” and was replaced in 2009 by the global GTIN, “Global Trade Item Number”. The EAN or GTIN is a barcode that can be read automatically and read by barcode readers.

For graphic designers in Europe, two standards from the almost infinite number of EAN codes in use worldwide are primarily important in the product area. EAN 13 and EAN 8, i.e. a barcode of either 13 or 8 digits. What do these numbers actually mean?

Continue reading

PDF/X4 – The future of PDF/X?

The PDF/X4 standard, a new PDF specification for PDF export, has already been available for several years. But what are the advantages of PDF/X4?

Users from the print sector have known the ISO PDF-X standards for many years. If the name PDF stands for “Portable Document Format”, i.e. the portable and thus transferable document, PDF “X” is a version specialized for “eXchange”, i.e. the exchange of PDF files. In concrete terms, this means that many of the functions that a PDF file can potentially display (form fields, calculations, 3D elements, films, etc.) but which cannot be controlled in print are prohibited in PDF/X in order to ensure secure data exchange.

While PDF/X2 hardly came into its own, PDF/X1a and /X3 are still the standards for the printing industry today; almost all online printers such as Flyeralarm etc. demand PDF files in the PDF/X-3 standard. Why? The PDF/X-1 and PDF/X-3 files offer many advantages to printers: Instead of open data from Quark XPress or Adobe InDesign, the PDF significantly reduces the workload for print shops. No native software is necessary, no fonts, no image links… all this used to cost time and money. And to round off the PDF, the X was added, which stood for production reliability, since only those things were allowed to be used in the PDF that could also be safely exposed and printed.

However, one of the biggest disadvantages of PDF/X-1 and /X-3 so far has been the lack of transparency:

  • Pictures were broken down into many small tiles, and were therefore no longer editable afterwards
  • Text was partially converted to paths if it was below transparent area, the editability of the PDF file was also obsolete here
  • Customers complained about the white lines in the PDF, a display error in Adobe Acrobat based on the tiling of lines.
  • The transparency reduction color space, i.e. the color space into which the transparencies were converted during PDF export, could only be set globally. Either CMYK or RGB. A media-neutral workflow was therefore no longer possible.

However, the new PDF/X-4 standard (ISO 15930-7) has also been available for several years. The PDF/X-4 standard can be used as of PDF 1.5 and also allows transparency, for example, so transparency reduction is no longer absolutely necessary. The PDF file becomes slimmer, images are no longer tiled and therefore also well represented and latest changes in the PDF file are possible for both images and texts. Since text also remains text, the full text search for PDF files is possible at any time. And: Due to the availability of Lab, RGB and CMYK data and the elimination of transparency reduction, a media-neutral workflow with all common color spaces plus spot colors is also possible.

PDF creation has also been simplified in recent years. Due to the elimination of the postscript intermediate stage with subsequent processing via Acrobat Distiller, PDF files can already be generated directly in the layout programs for a long time. And that again causes the omission of PPD files and much more.

Since InDesign CS3, PDF/X-4 documents can also be created here. Since version CS 5.5 ff the current PDF/X-4:2010 specification is also available. This means that the current standards of PDF/X-4 and PDF/X-4p are each based on the PDF 1.6 standard. PDF/X4-p refers to external color profiles, contains all data, the file is called PDF/X4, which has increasingly established itself as the standard and has also been demanded as PDF/X standard in the final examinations for media designers for three years. PDF/X-4 supports color management, Lab, CMYK, RGB, grayscale and spot colors. Transparencies and JPEG 2000, 16-bit data and OpenType fonts are also allowed.

PDF/X-4 actually does much better than the previous standards. And so it is only a question of time when PDF/X-4 will also become widely accepted. Simple and precise creation of PDF/X-4 files is now standard in Adobe InDesign or Quark XPress.

With all the advantages of the X-4 standard, however, the disadvantages should not be concealed

The more color spaces are possible besides CMYK in a PDF file, the more responsibility for the correctness of the data lies with the creator of the PDF, the designer. If you could be sure with the very secure PDF/X-1a printing standard that all data was in CMYK and flattened and that the result is displayed in Acrobat, which will later also be generated in print, then PDF/X-4 is no longer so secure. How many color spaces are included? Are they all correctly marked? Is the output color space correct? Are the transparencies reduced correctly?

Many software manufacturers have promised PDF/X-4 compatibility, e.g. for their RIP software… but only promised. Sometimes, the transparency reduction in the RIP results in bizarre cases, as in this example. In another concrete case from our practice, an RGB black area behind numerous CMYK layers, which should never have been printed to the best of our knowledge and belief, confused the images above it, which were transparently cleared via alpha channel, in such a way that the entire print tore off in a rectangle instead of running out softly on black. And: if the output color space of a PDF/X-4 proof file does not match the ordered proof profile, we cannot reliably proof the file correctly. Instead, we issue a “Data incorrect” message asking you to revise the file with the correct output color space.

This means that the three most important PDF/X color spaces will continue to exist in parallel for a long time to come: PDF/X-1a as the safest printing standard, PDF/X-3 as the most common and PDF/X-4 as the most flexible, but also most sensitive and “responsible” of the three.

The proof is much darker than the image on my monitor. Why?

Customers are often unsettled when they hold a proof in their hands. “The proof of the picture is much darker than the picture on my monitor. Why is that so? And what do I do now?”

There are many possible reasons for a deviation between the proof and, for example, the monitor display:

  • The monitor is not calibrated
    Only calibrated monitors can accurately display color. When I buy a cheap monitor and connect it to my computer, I definitely can’t see any real color. As a rule of thumb, only a hardware-calibrated monitor has a chance for correct color.
  • The monitor is calibrated, but the colors look different
    A monitor below 1,000 Euro cannot usually be calibrated to good color representation for the standard color space ISOCoated V2, because it has a too small color gamut. Only real proof monitors are also designed and suitable for the display of proofable colors.
  • The proof is not viewed under D50 standard light
    Especially in winter the lighting conditions are often poor. And incandescent lamps, energy-saving lamps and conventional neon tubes only provide very poor colour reproduction. Without a D50 light source, a proof cannot be evaluated.
  • The color settings in the software are wrong
    Often the image editing software like Photoshop is simply installed and used without adjustments. The selected color profiles often do not correspond to the profiles used for proofing. Apple-Shift-K for Macintosh and Control-Shift-K for Windows show you your profile settings in Photoshop.

In general, no patent remedy can be given for the correct display of proofs for the monitor. However, if a proof is provided with UGRA/Fogra media wedge CMYK V3.0 and test report, the chances are high that it reproduces the required colors very precisely. If your monitor image does not correspond to the proof, the error usually lies with you. The list of causes above can help you in troubleshooting.

Related Posts

My customer wants to print on a tin can. Pantone? CMYK? Can this be simulated in the proof?

Requests such as the proof of a printed tin can often reach us. Why can’t such a printed can be “proofed”?

A proof is a standardized product. Take the classic ISOCoatedV2 proof, for example; the standard proof for coated printing paper. Here is the definition in brief:

“Paper type 1 and 2, glossy and matt coated paper, dot gain curves A (CMY) and B (K) from ISO 12647-2:2004” (Source:

Metal is printed with a varnish. Neither the colour of the metal of the tin can nor the colour of the lacquer is clearly defined, nor the thickness of the lacquer application and the printing process in which the lacquer is applied (digital print / screen printing, pad printing etc.) is defined.

A contract proof refers to very tight tolerances and precisely defined framework conditions. This includes not only the densitometric and colorimetric reference of the printing ink, but also, for example, the paper white, which is simulated very precisely in the proof. For exactly this reason there is no proof for recycled paper: The papers and paper whites are simply so different that no uniform, standardized “color” of a recycled paper can be defined. From classic recycled paper with a neutral grey or yellowish-grey colouring to de-inked, almost white recycled papers, everything is available on the market. Just not by default.

Therefore, a proof always refers to offset or gravure printing under standardized conditions. Changed surfaces such as metal or changed paper colours such as recycled or high-quality image papers with inclusions or printing on coloured papers have not yet been standardised and therefore cannot be proofed.

Related Posts

White lines appearing in print PDFs in Adobe Acrobat

The question often arises why when creating a PDF-X/3:2002 file in Adobe Acrobat, white lines often appear in the preview when there are no lines at all in the file.

The answer is simple: In contrast to current PDF printing standards such as PDF/X-4:2010, which is exported as PDF 1.6 standard, the PDF-X/3:2002 standard often required by printers uses PDF format 1.3, in which transparency is prohibited. As a result, when you create drop shadows in Adobe InDesign, for example, they are converted into rectangular images. If such drop shadows are still used on background images, the white lines appear, which run horizontally and vertically through the PDF at the shadow points. But why do these lines disappear in print and are not visible in other applications like MacOS Preview?

Acrobat has a preview that applies anti-aliasing to vector elements to make edges as smooth as possible. However, this setting also affects paths and masks that are not actually visible at all. The pixel images of the reduced transparencies are therefore slightly blurred. And this is exactly where the white lines of the blur appear, which are actually zero in size and therefore disappear when printed on postscript-capable printers. Not PS printers partially print the screen display, whereby the lines remain disturbingly.

Most graphic artists know the effect, have postscript printers and simply live with it. However, if you are very annoyed by the white lines or if they also appear in the printout, you can simply switch off anti-aliasing in the Acrobat preferences. Under Acrobat > Preferences > Page Display you can simply deselect the checkbox “Smooth vector graphics”. This makes the edges of vector data slightly more pixelated, but the white lines of anti-aliasing disappear immediately.

Here you can simply deselect the option "Smooth vector graphics"

Screenshot from the Preferences of the Preview in Adobe Acrobat

Related Posts

A proof without profile. Is that possible?

Proofing service providers are often asked the question: “I have to have a proof done, but I don’t know for which profile. Can I also have a proof made without a profile?”

Proofs are standardized products that are created and tested according to a certain set of values. This is exactly the point that distinguishes them from any “colourful printouts”.
Specifically: A proof for coated printing paper is produced according to the standard values of ISOCoated V2 (paper type 1 and 2, glossy and matt coated image printing, dot gain curves A (CMY) and B (K) from ISO 12647-2:2004) and checked according to a set of values (FOGRA39L). A proof for uncoated paper (e.g. PSOUncoated or ISOUncoated) is produced and checked according to completely different value sets. Logically, because a print on uncoated paper looks definitely different in terms of colour and white value than a print on picture printing paper.

A proof must therefore always be prepared according to a standard and be verifiable according to a reference value set. A list of the current Proof Profiles (as of 2012) can be found here.

The problem: Many printing processes such as digital printing on a color laser or printing on a large format printing system (LFP) are not standardized and therefore there are no valid profiles and specifications.

So what to do? The most frequently used standard has established itself as the “de facto basis”: ISOCoated V2.

This is understandable, because colour-critical prints, catalogues etc. are mainly produced in offset printing on picture printing paper and are therefore subject to this standard. It is therefore generally assumed that a digital printer or an LFP printer, for example, should follow this standard and at least achieve this colour result.

So if you need to make a proof but don’t have the exact details of the profile you need, proof ISOCoated V2, which has become the industry’s most widely used standard and will always be accepted as the basic proof.

Unfortunately, a proof without a profile cannot be produced, because that would just be “colored paper from a proofing system”, but not a valid, ISO-compliant proof.

Related Posts

What’s a proof for? The most important reasons for proofing!

  1. A proof is reassuring:
    The proof shows the colour result of the subsequent printing.
    The customer knows exactly the later result from the proof and is reassured.
    The printer knows that the customer knows the proof and is also reassured.
  2. A proof is fast:
    Ordered today, delivered tomorrow: Modern proofing service providers work quickly and produce hardly any loss of time in the design and printing process
  3. A proof is precise:
    All professional service providers nowadays work with proof printers that are recalibrated at short intervals. A media wedge with test report also provides clear metrological proof that the proof is correct and within the limits of the standard deviations.
  4. A proof is cheap:
    In the past, repro studios often charged almost 30 euros for an A4 proof. Nowadays, it only costs a fraction. Proofing costs are of little importance in the production process.
  5. A proof also shows the colors that the monitor does not show:
    In most agencies, hardware-calibrated proof monitors are in short supply. And TFTs or old tubes show colors, but unfortunately some. A proof also depicts colors that standard monitors cannot display, but which can be printed.
  6. A proof simulates newspaper as well as coated paper.
    If the same advertisement is to appear in the glossy brochure for the trade fair stand, in the trade fair news and in the special supplement in the local daily newspaper for the trade fair, then the three different colour results can be excellently simulated and presented in proofs in advance. And who knows: Perhaps the customer will then have the house brochure printed on picture printing instead of on uncoated paper due to the proof, or will choose a different motif for the newspaper ad. The proof shows it.
  7. A proof can do CMYK and more!
    Modern proofing systems can reproduce up to 98% of all Pantone colours and HKS colours in the proof.  This means that not only four-color, but also five, six and multicolor files can be proofed. Today, proofing is often done twice: once in CMYK plus corporate color in Pantone and once in CMYK and corporate color in CMYK. The client and agency can then decide whether the colour result is worth the extra charge for the fifth colour in the print.
  8. A proof is made of paper.
    Just like the product he’s simulating. A proof can be placed next to the print and compared under Normal. And to check it out, you can carry both to daylight, look at them in the candlelight and much more. A soft proof cannot do all this.

This is the first incomplete list. You know of other good reasons? We look forward to any comments and would be happy to add further points.

Related Posts

Which RGB working colour space is suitable for colour-consistent work?

In the early days of color spaces Apple and e.g. Photoshop up to version 5.5 set the monitor color space as working color space by default. But it soon became clear that a design office would be working with 10 Macs in 10 different color spaces. A neutral concept was needed.

There are many RGB Colour Spaces around. In the area of print media there are currently primarily three different variants: sRGB, AdobeRGB(1998) and eciRGB_V2.

The sRGB color space is widely used in digital cameras and is the industry leader in the consumer segment. Problem for printing: sRGB is a relatively small color space, and does not cover the color possibilities of modern offset printing systems and digital printers. Since offset printing profiles such as ISOCoated_v2 have a much larger color space, it makes little sense to perform retouching in sRGB.

From our point of view eciRGB_V2, a further development of eciRGB, is optimal. This color space has been specially created for use in the printing sector and offers some strengths:

  • It covers the colors of all modern printing color spaces (offset, gravure, web offset, newspaper), but is not much larger and therefore does not give away any resolution.
  • Equal shades of red, green and blue result in neutral shades of grey
  • Between 0/0/0 and 50/50/50 there is roughly the same distance as between 50/50/50 and 100/100/100.
  • The white is 5000 Kelvin and the gamma is 1.8 Kelvin.

The eciRGB_v2 color space can be downloaded free of charge from the pages of the European Color Initiative (ECI).

The AdobeRGB 1998 color space, which has been widely used by Adobe since Photoshop 5.5 and today in all parts of the Adobe product range, is also well suited for the printing sector, but works with a gamma of 2.2 and is designed for degrees of whiteness from D50 to D65. All common print color spaces can also be well mapped in AdobeRGB 1998. You can find Adobe documentation on this color space here.

Related Posts

What data should I give for proofing?

A proof is suitable for two types of color control: firstly, during the creation or retouching phase, e.g. to reconcile a color retouched image with the original, and secondly to check the final data directly before printing.

For control proofs during the data creation of a project, the data format usually does not matter. Whether PDF, JPEG, TIFF; EPS, PS or even PSD… Many proofing companies accept a variety of data formats. For a correct evaluation of the result, however, it is important to proof in the color space in which the print product is also created later. Data for a letterhead should therefore be proofed in ISOUncoated or PSOUncoated, while products printed on image printing paper should be proofed in ISOCoatedV2. For yellowish paper, newsprint or gravure printing, there are many other profiles for which a proof can be produced. You can find a good overview of the current proof profiles here. It is also important that the proof format and the final print format do not differ too much. Only in this way is a correct check possible.

When the brochure has been laid out or the catalogue production has been completed, a proof should be prepared again for the final check by the customer. This proof is then created with exactly the same data that is also sent to the print shop. This is usually a PDF X/3:2002 file, as this is the preferred data format for printers. If the pages are delivered to the printer with bleed marks and bleed, then the proofs should actually be created in exactly the same way. The finished proofs can then first be used as approval for the customer, and secondly for checking the OK sheet in the print shop. This ensures that no unpleasant surprises wait for the customer (what does the colour look like????) or the printer (why does the customer make a complaint?????) after printing and bookbinding.

Related Posts

Can spot colours be proofed?

Since many printed matter contains spot colours such as Pantone or HKS, the question often arises whether these colours can be proofed at all. The answer is “no”. Only an approximate simulation of these colors is possible.
The reason: Each special ink is a specially mixed, “real” ink and therefore cannot be mixed from the 4 printing inks (cyan, magenta, yellow and black).

Today, modern proofing machines have up to 12 different printing colours and, in addition to the classic primary colours, also have, for example, orange and green and violet as real colour pigments in the machine. Proof printers such as the Epson SureColor P9000V are therefore capable of displaying significantly larger color spaces than, for example, ISOCoatedV2. The spot color simulation in these devices is therefore sometimes very good when controlled via a Contone driver, which can access the entire color space of the proof printer. Epson himself points out, for example, that “98% of all Pantone colors” can be covered. This may be doubted, but a number of over 90% of all Pantone colors is realistic from our point of view.

In the past, Pantone and HKS colors were simply converted by the proofing systems to CMYK and then simulated in the standard color space, i.e. mostly ISOCoatedV2. The representation of the colors here is mostly completely insufficient. For the reproduction of Pantone and HKS colours in a proof it is therefore immensely important to have a modern proof printer with many colours and a high colour gamut and a modern proofing software which is also able to precisely control the printed gamut.

Differences in the quality of the simulation of spot colors can quickly be seen in the different printing systems: If the proofing service provider prints with an older 6-color or 8-color system (Cyan, Light Cyan, Magenta, Light Magenta, Yellow and Black or Light Black), spot colors are simulated worse than, for example, with a modern 11-color system with Cyan, Light Cyan, Orange, Yellow, Magenta, Light Magenta, Photo Black, Matte Black, Light Black, Light light Black and Green.

The higher simulation quality of the spot colors is generated by the fact that orange, for example, already exists as a separate color and does not have to be mixed from magenta and yellow before the spot color simulation.

Of course, it must be said that there are limits, especially in the area of metallic or fluorescent colours; these colours are currently not reproducible in proofing.

The spot-colour simulation of gradations is also critical

In most proofing systems, only the 100% values of a Pantone or HKS color are underlaid. If, for example, a font logo with 100% color application of a Pantone color is to be simulated, this is precise and is well represented in most proofing systems.

However, it becomes more difficult if the logo contains not only 100% areas but also a 30% Pantone colour area, since this is not defined in the proofing system, but is simulated by the proofing system. In some cases, considerable deviations from e.g. HKS colour fans can be observed.

It becomes even more difficult if, for example, a grayscale TIFF lies on a 100% HKS area and overprints. For the graphic professional it is immediately comprehensible that the HKS surface simply has to become correspondingly darker at this point due to an overprinting 30% black. However, the proofing software must recognize this effect correctly, calculate it correctly and then simulate it correctly with the 11 colors available from the proof printer. It is easy to understand that countless errors can occur. And the supreme discipline: 7-colour Pantone files with lots of overlaying and overprinting Pantone colours or HKS colours with overprinting CMYK elements can at best be calculated even by the most modern proofing systems, but can by no means be colour-accurately simulated.

The bad news is that a proof with spot colors is therefore never as color-binding according to the current state of the art and varies more depending on the proofing system.

But the good news is that spot colors, especially solid colors, can now be simulated well by modern proofing systems. A modern proofing system therefore also offers the possibility of getting a realistic impression of spot color prints at a fraction of the cost of a test print on a offset press.

Related Posts

Standardized light and metamerism effect

A proof is only as good as the light under which it is viewed. Just going to the window or switching on the light at dusk is useless: between December and July, between 8 am and 8 pm, between cloudy and sunny days there is a huge difference in the lighting, which makes any colour evaluation impossible. And if you switch on the light, you normally switch on a bulb with 2700 Kelvin – or even worse: an energy-saving neon bulb that somehow shines in any spectra… a disaster!

The reasons for metamerism effects (in short: that two colors look identical under one light, but completely different under another) lie in the different printing technologies. Colors that look the same under a light bulb can suddenly look very different under a neon tube.

In recent years, ink-based digital proofs have established themselves in the proofing sector. Because it is printed in ink, specially coated paper must be used, which is not in any way similar to the subsequent production run. Anyone who has ever tried to print on glossy coated paper with an inkjet printer knows: the ink never lasts! Metamerism is therefore always involved when a proof is to be compared with offset printing.

The light under which proof and production run are viewed is particularly important.

ISO 3664 regulates standardized light, which is important for viewing proofs and prints. D50 is no longer D50: The International Lighting Commission CIE has revised ISO 3664 in recent years and adapted it to today’s circumstances. If UV components used to be strictly prohibited, they are now part of the standard. In the past, the focus was on consistency between slide and print, while today monitor, digital proof and offset printing are important. Therefore, proofs must always be viewed under D50 Standardized Light, so that they are really “colour-binding” in their perception.

If you want to check metamerism effects, we recommend the UGRA colour temperature indicator. With these strips, metamerism effects can be checked very quickly and clearly.

Related Posts

Embed fonts, convert them into paths or rasterize them?

To ensure secure data exchange between customers and proofing service providers, fonts must be embedded, converted into paths or rasterized. This ensures that it is and remains exactly the same font and exactly the same style.

How do I do that?

  • With InDesign and QuarkXPress, you select the PDF/X-3 standard when exporting data.
  • For Illustrator and Freehand, select the font and select “Convert font to paths” from the menu.
  • In Photoshop, select the text layer, right-click on it and select “Rasterize Text”.

Related Posts

What is the UGRA-Fogra Media Wedge 3.0 used for?

Every print shop in Germany adheres to a predefined standard, the process standard offset printing. This standard defines target and tolerance values for printed products. In order to prove that your proof delivered to the print shop meets these standards or is within the tolerances, the media wedge is measured and the values analysed in case of doubt – i.e. in case of a streak. If these measured values are correct, the print shop is obliged to adhere to and achieve these values.

Practice generally shows the following: If you want to have a 4-page image brochure proofed and printed, it is usually sufficient to have a single media wedge printed under the 4 pages. If the media wedge is also provided with a test report, the colour accuracy for the print shop is directly confirmed as a guideline.
However, if you want to be on the safe side, have a separate media wedge (including test report) printed under each of the 4 pages of your brochure.

Related Posts

How color-accurate are proofs?

A proof is prepared according to the currently valid ISO standard 12647-7 and is legally binding with a UGRA-Fogra media wedge and measurement report.

How does this check work?

If you need a proof with UGRA/Fogra Media Wedge CMYK V3.0, there are two ways to add the test report to your data.

  1. With proofing devices in which a measuring device is integrated, the media wedge with 3×24 standardised colour fields is printed directly under the proof data. This media wedge is driven directly in the proofing device to a kind of “hair dryer” in the measuring device and dried there. After a few minutes of drying, the media wedge continues and is measured directly in the proofer. This takes a few minutes. The measured values determined in this way are returned to the proof server and evaluated there. If the color values are correct and within the tolerances of the strict ISO standard, a test report of the measurement is then printed directly under the media wedge, which guarantees you color accuracy in accordance with the process standard offset printing.
  2. For proofing devices without integrated measuring device, only the standardized media wedge is printed under the proof data. A check takes place subsequently and outside the proof printer. The media wedge is then measured with an external measuring device and the target and tolerance values are output to a label printer. This label is then stuck directly under the media wedge.

What is the advantage of automated creation and checking of the media wedge directly in the proofing device?

  • Measurement is automated directly after proof printing, measurement errors due to manual operating errors are excluded. Since the test report is not subsequently attached, as is often still the case, manipulation is impossible.

Further information on the test report, the media wedge and on the work and responsibility of UGRA/Fogra can be found at and

Related Posts