CIELAB HLC Colour Atlas available in the Proof.de Shop

It has taken almost a year, but we are all the more pleased now: The “CIELAB HLC Colour Atlas” is completed and can be ordered in our shop. The HLC Colour Atlas is a open source, high-precision colour system based on open standards.

The CIELAB HLC Colour Atlas offers professional users of colour three decisive advantages:

  • The CIELAB HLC colour atlas is based on open, non-proprietary standards that are free of copyrights and trademarks.
  • The colour atlas with all components is available to all users free of charge online and can be downloaded, used and passed on directly.
    It is released under an OpenSource Creative Commons license.
  • The printed reference of the CIELAB HLC colour atlas impresses with outstanding precision and, unlike some commercial products, the colour accuracy is extremely high with a DeltaE00 median of 0.3 and an average DeltaE00 of 0.5. In most cases, the deviation from the ideal colour reference and colour differences between two colour atlases can be measured, but not perceived by the human eye. Each atlas is produced on our best Fogra-certified high-end proofing printer on Fogra-certified paper. Each copy is delivered with an individual, colorimetric test report in accordance with ISO 12647-7:2016 to document the color accuracy of each individual color atlas.

The atlas consists of the following components:

  • A printed colour atlas master reference (A4, ring binder) with 2040 colours, based on the intuitive HLC colour model (Hue, Lightness, Chroma), with shades of 10 between the individual colours. This also includes colors that are not reproducible in normal CMYK workflows (jewelry colors). This component is produced with the greatest care in Tübingen. The colour atlas contains an introduction and instructions for use in German or English.
  • A free PDF-Master version of the color atlas, which also displays numerous other color spaces such as sRGB, Fogra39, Fogra51 and 52 etc. via layers in the PDF file.
  • Color palettes with all 2040 LAB values for Adobe software in ASE format. We provide this library in a timely manner also in the SBZ format of Swatchbooker as well as in sRGB versions for LibreOffice (SOC), GIMP (GPL) and Scribus 1.4. x (XML). Scribus 1.5. x already contains the SBZ-file and a sRGB-version is shipped with LibreOffice since version 5.4.4.4, as well as with the current stable version Scribus 1.4.6.
  • A table with color conversion values of all colors of the atlas according to sRGB, HEX and ISOCoatedV2 in two rendering intents.
  • Spectral data of all color fields in a CxF v. 3 file containing the color data of all color fields in spectral values. This file enables, for example, paint manufacturers to use all colours of the atlas with high precision spectral spectral data or to create their own reliable references – open source and without licensing fees. For example, an ink manufacturer can simply load the CxF3 file into typical color formulation software and create the right mix for its printing inks. This applies not only to offset printing, but also to coatings, textile inks and plastics.

All files are available for free download under a CC license. Only the HLC colour atlas printed by Proof GmbH is subject to a fee, as production is very labour and cost-intensive. The introductory price of EUR 99, – is valid until the end of April 2018, starting in May EUR 149, — plus VAT and shipping costs.

You can order the CIELAB HLC colour atlas here in our shop

We at FreieFarbe e. V. and Proof GmbH not only see the “CIELAB HLC-Farbatlas” as a genuine and open alternative to the hundreds of proprietary color systems, but we also believe that the highest quality standard of the printed color atlas can only be achieved by coating systems.

Since the beginning of January, we have also been working on converting our open colour system with the German DIN standards organisation into a DIN SPEC standard.

INVOLVED IN THIS PROJECT HAVE BEEN:

Holger Everding (DPT Studio Oldenburg), Jan-Peter Homann (Homann Colormanagement), Eric A. Soder (pixsource. com), Peter Jäger (pre2media. ch) and Matthias Betz (Proof GmbH) as well as Christoph Schäfer and Gregory Pittman (Scribus Team).

WITH THE FRIENDLY SUPPORT OF:

freeFarbe e. V. also thanks for the support of ColorLogic GmbH with its software ZePrA for special color optimization and ColorAnt for the acquisition of spectral data, Epson Deutschland GmbH for support with ink and GMG GmbH & Co. KG for the support with certified proof papers and their color proofing software.

Heaven 42 proofs on proof paper with optical brighteners

Good consistency in the paper white of proof paper and original Scheufelen heaven 42 paper color

Good consistency in the paper white of proof paper and original Scheufelen heaven 42 paper color

The Proof GmbH provides proofs for Scheufelen Heaven 42 papers on the new EFI 8245 OBA proofing paper. With this new proofing paper it is now possible to proof the bright-white paper dye of Heaven42l.

With Heaven 42 a bright white paper was developed by the German paper company Scheufelen, which opened up a new color whiteness. Especially technical motifs (shades of gray, silver tones from 4c, strong contrasts) act on Heaven 42 particularly brilliant and neutral. With an unchanged separation (eg with ICC profile “ISOcoated_v2”), but the printed image with the same color and dot gain looks considerably colder. Using images with warm tones (z. B. skintones) it is therefore recommended to do color adjustments.

We proofed Heaven42 on EFI Proof Paper 8245 OBA with optical brighteners and measure the Proofs M1 standard with consideration of optical brighteners. The proof can be provided with a UGRA / FOGRA media wedge and test report. Our Heaven42 proofs provide a good simulation of Heaven42 offered by Scheufelen for the ICC Profiles of Heidelberger Druck. The profile can be downloaded from the Scheufelen Website with additional notes from Scheufelen to pressure requirements etc., which are also included in the download of the profile.

The Heaven 42 Profiles can be downloaded here.

Scheufelen offers two ICC-Profiles for Download, we are proofing the profile of Heidelberger Druck (“_HD”).
Profile: Heaven42_AM_U280_K98_G80_HD.icc
Ink Coverage: ~280 % (U)
Black: GCR , 80 % (G)
Max Black: 98 % (K)
Proofing Substrate: EFI Proof Paper 8245 OBA Semimatt
Verification Profile: Made from Reference Data
Verification Lightning: M1 with OBA

Heaven 42 Proofs can be ordered directly in Proof store of Proof.de. Simply select the profile “Heaven 42 (Coated OBA)”.

Scheufelen Heaven 42 Heaven42 Vergleich mit ISOCoatedV2 Digitalproof der Proof GmbH

Bottom left: ISOcoatedv2 Proof on EFI Gravure Proof Paper 4245, Bottom right: Heaven 42 Proof on EFI Proof Paper 8245 OBA Above: Original paper white Heaven 42 by Scheufelen

Scheufelen Heaven 42 match with ISOCoatedV2 Digitalproof of Proof GmbH

Below: ISOcoatedv2 Proof to EFI Gravure Proof Paper 4245. Above: Heaven 42 Proof EFI Proof Paper 8245 OBA. Middle: Original paper pattern Heaven 42 Scheufelen

 

 

Is a proof possible on special paper such as publication paper?

“We print 135gr/sqm on a Berberich Allegro. Can you make us a proof on this paper? Can you proof on our final publication paper?”

Our telephone support often asks for a proof on publication paper. Unfortunately, we always have to answer the question negatively. I would like to briefly explain the reasons for this in the following article.

Proofing on publication paper is still technically impossible.

All proofing systems currently certified by Fogra are based on an inkjet printer as a test printer, mostly from Epson, Canon or HP. These printers are characterised by a large colour space, good resolution and excellent homogeneity and colour stability – all characteristics that are absolutely necessary for a proof printing system. The Epson systems used by the majority of proof printers are based on 11-colour pigment inks, which can reproduce a significantly larger colour space than e.g. ISOCoatedV2. However, the prerequisite for this is the use of special papers optimized for inkjet printing, in which the pigments and inks are optimally emphasized. This requires special coatings that are optimized for optimum reproduction, fast drying, good abrasion resistance and high UV stability of the print. On an image printing paper without these coatings, the ink would run, hardly dry and would not be smudge-proof. The color space would also be impossible to achieve. A proof would therefore not be possible from this point of view.

Stamp once on a coated printing paper. You can easily wipe off the stamping ink even after many days. The situation is similar with inkjet inks. And even colour laser printers are no solution. The toner applied to the paper in these systems and then liquefied by heat to bond with the paper cannot penetrate the closed coated surfaces. This means that the print is not fused and the toner can be wiped off the surface directly after printing.

Modern digital printing systems such as the iGen from Xerox are also capable of neatly mapping color spaces such as ISOCoatedV2. Some of these systems are also able to print offset papers properly, although here too special papers optimized for digital printing are used. However, despite major improvements in recent years, these digital printing systems are still not capable of reproducing the small color deviations required for a true color-accurate proof, a “contract proof in accordance with ISO 12647-7”. Even after a complete recalibration and re-profiling on the paper used, these systems only achieve “Validation Print” quality according to ISO 12647-8.

“Validation Prints” are not “contract proofs”, they are not color-binding and not legally binding, since the permissible color deviations of Validation Prints may be significantly higher than those of real proofs. The result would therefore only be a “print”, which is not binding for a print shop as a result, not “color-binding” but only “colored goods”. And it is precisely this commitment that must be achieved with a proof. In addition, the color stability of these systems is predominantly so critical that even with a new profiling in the morning in the afternoon, even the lax validation print tolerances can no longer be achieved and the system again has to be recalibrated and profiled.

The only solution: the classic proof. If it wasn’t for the cost.

Here, real offset printing with real colours produces the real print later in an edition of one piece. Since the proof is printed in real offset printing, production paper can also be used here without any problems. The downside? The price. Depending on the format, a proof on circulation paper costs several hundred euros. Since press proofs are still predominantly film-based printed today, but the real printing is usually via computer-to-plate printing plates, there is no 100% precision of the press proof for the production print today either. CTP is also available from proofing companies, but at an even higher cost. A little postcard, a slim fanfold? This is not economically viable in proof printing.

So don’t use circulation paper for shorter print runs. Especially with ISOCoatedV2, a classic proof offers you true color accuracy and stability at very low costs. Just lay the cover paper next to it. We are sure that this is the best way for you to imagine what the subsequent printing will look like, in the “most colour-accurate” and also at the best price. And in comparison to Validation Print digital printing, it is legally binding and binding in colour.

Related Posts

Proof for Improved Newsprint (INP), Fogra 48

The default was:

“We need a proof for improved newsprint, white’76.”
“Do you know the proof profile?”
“No, unfortunately not. Can’t you decide that?”

We have looked into this question: UPM EcoPrime 76 H is printed on web offset paper in a large print shop. The information of the customer service there was:

“The default profile is Fogra 42, PSO SNP Paper (ECI) but that doesn’t fit at the back and front, is much too gray. “Proof according to Fogra 40, SC Paper (ECI), that’s much better.”

The two profiles do not match at all. SC Paper is for super-calendered paper, PSO SNP Paper for standard newsprint.. And the dot gain curves also differ completely.

Fogra informed us on request that it considers both profiles to be unsuitable. From their point of view, the proof would be better with Fogra 48, Improved Newsprint INP. You would deduce that without exact knowledge of the paper on the basis of our information. She writes that she would “also advise FOGRA48. The print shop, for its part, must comply with the associated target values for solid inking and dot gain”.

However, it seems reasonable to assume that the print shop – without knowing about Fogra 48 or bringing the profile into the discussion – will not know anything about the appropriate target values and will certainly not print according to Fogra 48.

The conclusion: Despite great efforts, no binding profile can be determined for the proof on improved newsprint in this case. And so it remains for customers and service providers to choose between three paths that all three are wrong:

  • The profile specification of the paper manufacturer: Fogra 42
  • Possibly correct: solid colouring and dot gain.
  • Definitely wrong: white point and colour impression
  • The print shop’s recommendation: Fogra 40
  • Visually probably better, if by no means correct: white dot and color appearance
  • Definitely wrong: Paper type
  • The data of Fogra: Fogra 48
  • Possibly correct: white dot and paper
  • Definitely wrong: solid inking and dot gain due to lack of knowledge of the print shop
  • and therefore probably incorrect print settings

Fogra 42, Fogra 40 and Fogra 48 in comparison:

pso_snp_paper

sc_paper

pso_inp_paper

 

 

 

 

 

The Paper: UPM EcoPrime 76 H

eco-prime_paper

 

Related Posts

Create EAN / GTIN codes: Tips for graphic artists

EAN codes are standard on every product today. While in the good old days, shopowners themselves typed the prices into a cash register by hand, today scanner cash registers are the rule, which scan standardized EAN codes with a laser and thus clearly recognize the article and add it to the receipt.

EAN, by the way, stands for “European Article Number” and was replaced in 2009 by the global GTIN, “Global Trade Item Number”. The EAN or GTIN is a barcode that can be read automatically and read by barcode readers.

For graphic designers in Europe, two standards from the almost infinite number of EAN codes in use worldwide are primarily important in the product area. EAN 13 and EAN 8, i.e. a barcode of either 13 or 8 digits. What do these numbers actually mean?

Continue reading

How exactly can printing ink be measured?

For some years now, the possibilities of colorimetric measurement of printing inks have become simpler and cheaper. And so it is often believed that measuring printing inks is simple, inexpensive and, above all, highly accurate. And this also across a wide variety of brands and generations of measuring devices. Is that true?

If you look at a few studies, that does not necessarily seem to be the case. IFRA, for example, requires that when measuring BCRA ceramic tiles the colour differences between different measuring instruments should be below Delta-E 0.3. In reality, however, things looked different. In a Nussbaum study, 8 out of 9 measurements were for a Delta-E greater than 2.0; in a Wyble & Rich study, the deviations were between Delta-E 0.76 and 1.68. But why are the deviations so large?

On the one hand, the measuring instruments differ in the way they illuminate the surfaces to be measured. This is important in two respects: On the one hand, measurements can vary greatly depending on the material, for example, because light is emitted and measured from only one light source onto the measuring surface. If a measuring instrument has only one lamp, which, for example, radiates at an angle of 45 degrees onto the measuring surface and whose reflection is measured, then the measurement can deviate by up to Delta-E 3.0 if you only rotate the measuring instrument about its own axis. If a left-handed person and a right-handed person measure the same tiles with the same measuring device, then just by holding the measuring device differently and by the different lighting angles of the tiles a measurement can be completely different.

The solution for this: In a measuring device, several light sources are distributed or, in the best case, the illumination is emitted directly circular at an angle of 45 degrees in order to minimize such effects.

Continue reading

Layout in RGB, print in CMYK. Problems?

Especially in larger companies today the layout in RGB is the rule rather than the exception. The advantages are obvious:

  • The layout takes place in a large, almost media-neutral color space
  • All Photoshop filters are available without restrictions
  • The process of color space conversion to CMYK is shifted to the production process as late as possible

In practice, however, there are two potential problems in particular.

Problem 1: CMYK conversion in the last step.
The catalogue is designed in InDesign, all data is perfectly matched, the last step before printing and proofing is the export to a printable PDF in CMYK. Usually this is done via a preset in InDesign, which defines the exact specifications for the color space conversion. In practice, however, this color space transfer can hardly be monitored. The problem: Even if you check the color values in Acrobat in the exported PDF file, for example, Acrobat does not really display the colors it contains. Acrobat brav would show you CMYK values even if the RGB images are still wrongly contained. However, other CMYK values can occur during printing when the data is processed again. Lately it looked like this:
Continue reading

The proof is much darker than the image on my monitor. Why?

Customers are often unsettled when they hold a proof in their hands. “The proof of the picture is much darker than the picture on my monitor. Why is that so? And what do I do now?”

There are many possible reasons for a deviation between the proof and, for example, the monitor display:

  • The monitor is not calibrated
    Only calibrated monitors can accurately display color. When I buy a cheap monitor and connect it to my computer, I definitely can’t see any real color. As a rule of thumb, only a hardware-calibrated monitor has a chance for correct color.
  • The monitor is calibrated, but the colors look different
    A monitor below 1,000 Euro cannot usually be calibrated to good color representation for the standard color space ISOCoated V2, because it has a too small color gamut. Only real proof monitors are also designed and suitable for the display of proofable colors.
  • The proof is not viewed under D50 standard light
    Especially in winter the lighting conditions are often poor. And incandescent lamps, energy-saving lamps and conventional neon tubes only provide very poor colour reproduction. Without a D50 light source, a proof cannot be evaluated.
  • The color settings in the software are wrong
    Often the image editing software like Photoshop is simply installed and used without adjustments. The selected color profiles often do not correspond to the profiles used for proofing. Apple-Shift-K for Macintosh and Control-Shift-K for Windows show you your profile settings in Photoshop.

In general, no patent remedy can be given for the correct display of proofs for the monitor. However, if a proof is provided with UGRA/Fogra media wedge CMYK V3.0 and test report, the chances are high that it reproduces the required colors very precisely. If your monitor image does not correspond to the proof, the error usually lies with you. The list of causes above can help you in troubleshooting.

Related Posts

My customer wants to print on a tin can. Pantone? CMYK? Can this be simulated in the proof?

Requests such as the proof of a printed tin can often reach us. Why can’t such a printed can be “proofed”?

A proof is a standardized product. Take the classic ISOCoatedV2 proof, for example; the standard proof for coated printing paper. Here is the definition in brief:

“Paper type 1 and 2, glossy and matt coated paper, dot gain curves A (CMY) and B (K) from ISO 12647-2:2004” (Source: farbproofs.de)

Metal is printed with a varnish. Neither the colour of the metal of the tin can nor the colour of the lacquer is clearly defined, nor the thickness of the lacquer application and the printing process in which the lacquer is applied (digital print / screen printing, pad printing etc.) is defined.

A contract proof refers to very tight tolerances and precisely defined framework conditions. This includes not only the densitometric and colorimetric reference of the printing ink, but also, for example, the paper white, which is simulated very precisely in the proof. For exactly this reason there is no proof for recycled paper: The papers and paper whites are simply so different that no uniform, standardized “color” of a recycled paper can be defined. From classic recycled paper with a neutral grey or yellowish-grey colouring to de-inked, almost white recycled papers, everything is available on the market. Just not by default.

Therefore, a proof always refers to offset or gravure printing under standardized conditions. Changed surfaces such as metal or changed paper colours such as recycled or high-quality image papers with inclusions or printing on coloured papers have not yet been standardised and therefore cannot be proofed.

Related Posts

White lines appearing in print PDFs in Adobe Acrobat

The question often arises why when creating a PDF-X/3:2002 file in Adobe Acrobat, white lines often appear in the preview when there are no lines at all in the file.

The answer is simple: In contrast to current PDF printing standards such as PDF/X-4:2010, which is exported as PDF 1.6 standard, the PDF-X/3:2002 standard often required by printers uses PDF format 1.3, in which transparency is prohibited. As a result, when you create drop shadows in Adobe InDesign, for example, they are converted into rectangular images. If such drop shadows are still used on background images, the white lines appear, which run horizontally and vertically through the PDF at the shadow points. But why do these lines disappear in print and are not visible in other applications like MacOS Preview?

Acrobat has a preview that applies anti-aliasing to vector elements to make edges as smooth as possible. However, this setting also affects paths and masks that are not actually visible at all. The pixel images of the reduced transparencies are therefore slightly blurred. And this is exactly where the white lines of the blur appear, which are actually zero in size and therefore disappear when printed on postscript-capable printers. Not PS printers partially print the screen display, whereby the lines remain disturbingly.

Most graphic artists know the effect, have postscript printers and simply live with it. However, if you are very annoyed by the white lines or if they also appear in the printout, you can simply switch off anti-aliasing in the Acrobat preferences. Under Acrobat > Preferences > Page Display you can simply deselect the checkbox “Smooth vector graphics”. This makes the edges of vector data slightly more pixelated, but the white lines of anti-aliasing disappear immediately.

Here you can simply deselect the option "Smooth vector graphics"

Screenshot from the Preferences of the Preview in Adobe Acrobat

Related Posts

A proof without profile. Is that possible?

Proofing service providers are often asked the question: “I have to have a proof done, but I don’t know for which profile. Can I also have a proof made without a profile?”

Proofs are standardized products that are created and tested according to a certain set of values. This is exactly the point that distinguishes them from any “colourful printouts”.
Specifically: A proof for coated printing paper is produced according to the standard values of ISOCoated V2 (paper type 1 and 2, glossy and matt coated image printing, dot gain curves A (CMY) and B (K) from ISO 12647-2:2004) and checked according to a set of values (FOGRA39L). A proof for uncoated paper (e.g. PSOUncoated or ISOUncoated) is produced and checked according to completely different value sets. Logically, because a print on uncoated paper looks definitely different in terms of colour and white value than a print on picture printing paper.

A proof must therefore always be prepared according to a standard and be verifiable according to a reference value set. A list of the current Proof Profiles (as of 2012) can be found here.

The problem: Many printing processes such as digital printing on a color laser or printing on a large format printing system (LFP) are not standardized and therefore there are no valid profiles and specifications.

So what to do? The most frequently used standard has established itself as the “de facto basis”: ISOCoated V2.

This is understandable, because colour-critical prints, catalogues etc. are mainly produced in offset printing on picture printing paper and are therefore subject to this standard. It is therefore generally assumed that a digital printer or an LFP printer, for example, should follow this standard and at least achieve this colour result.

So if you need to make a proof but don’t have the exact details of the profile you need, proof ISOCoated V2, which has become the industry’s most widely used standard and will always be accepted as the basic proof.

Unfortunately, a proof without a profile cannot be produced, because that would just be “colored paper from a proofing system”, but not a valid, ISO-compliant proof.

Related Posts

Paper white simulation of PSOUncoated

Since 2009 PSOUncoated has been the standard profile for uncoated paper. Nevertheless, proof service providers often have the problem that at first glance proofs on PSOUncoated often differ significantly from the print result. Immediately visible: the white point of the paper.

The PSOUncoated paper white looks very grayish. If, for example, PSOUncoated is proofed on an EFI 9120 XF paper, which actually has a neutral white coloration as paper, then the paper must be recolored by the printer in terms of paper white. This paper-white simulation makes the proof look “grayish” and often not “bright white” like the real production paper. “I can’t put this down to my client” proof service providers often hear from the agencies and designers who commission proofs. And frankly, printing on bright white uncoated paper will also differ significantly from the PSOUncoated Proof result depending on the paper selected.

Some proofing services still proof uncoated paper according to ISOUncoated, because the paper tone is much whiter and not so grayish. In the medium term, however, this will not overcome the misery: PSOUncoated is the current standard according to which the process standard for offset printing certified print shops are also based. But in the pressroom the differences between norm and reality often become apparent. If the new D50 standard light according to ISO 3664:2009 with higher UV components is used for inspection at the printing table, then proof and printing result can often only be matched very poorly. And due to the long standardization periods, this problem will continue to accompany printers and proofing service providers for quite some time to come.

Related Posts

Why monitor and paper don’t get along when it comes to color.

Colour is colour, you’d think. That’s right. But have you ever tried to explain the colour of your new car or your new red wallet to a friend on the phone? You will notice that human color recognition and the reproduction of the same in another medium is very difficult.

The same applies to computers – better: monitors, and printers – i.e.: laser printers, inkjet printers or newspaper printing or offset brochure printing.

Why is the red on a monitor different from exactly the same red printed on paper? It’s simple: put the paper in front of the monitor. The two shades of red are exactly the same. Like this. And now you’re completely darkening the room. What do you see? The red on the monitor is still red. And exactly the same red on paper? This is black now. Why is that? Very simple:

Translated with www.DeepL.com/Translator

A monitor adds light, i.e. spectral components, to the existing ambient light. If you see red on a monitor, it is because the monitor actively emits red light.

And now the paper: When do you see red on paper? Exactly when white light falls on the paper, for example through a window or a lamp. And when do you see the color red on paper?

When white light falls on the paper and the paper extracts the non-red spectral components from the white light and reflects the red light. That’s when you see the color red.

One colour, two completely different ways of production. And this is exactly where the color calibration and the proof start. The strategy? Fairs. And this under fixed conditions and not with the human eye, but with “incorruptible” technology.

Put simply, a monitor calibration device can measure your monitor and see exactly “how much” color your monitor can display, and “how wrong” your monitor can display color. And if your computer knows that, it can correct the monitor.

Another measuring device can emit neutral white light onto a paper and measure the reflected color. Depending on the printing process and paper, the ink looks completely different, but the meter again sees “how much” ink the print can represent and “how wrong” the print represents ink. And if your computer knows this, it can correct it. And:

If the computer knows the color representation of the monitor and printer, it can correct and adjust the representation so that both correspond to the same color. Of course, this only works if the color and brightness of the light that illuminates the paper is also known and standardized.

And how does the proof work? Very simple:
If a computer also knows that the final printed product is to be printed in offset on an image printing paper, and it knows the colour representation of this printing process, then it can simulate this on a monitor and on an inkjet printer.

On the monitor, this color-accurate representation is a so-called “soft proof”, the color-accurate preview of the subsequent print on the inkjet printer is called “Proof” or “Contract Proof”.

This inkjet printing must be very precise and meet the highest demands in gamut and color simulation. And since the image processing technology, color matching calculation and measuring technology behind it is not very cheap, proofs are still mostly “expensive” inkjet prints. Due to new printing systems and inexpensive and better measuring technology, however, prices have also fallen significantly here in recent years.

Related Posts

What’s a proof for? The most important reasons for proofing!

  1. A proof is reassuring:
    The proof shows the colour result of the subsequent printing.
    The customer knows exactly the later result from the proof and is reassured.
    The printer knows that the customer knows the proof and is also reassured.
  2. A proof is fast:
    Ordered today, delivered tomorrow: Modern proofing service providers work quickly and produce hardly any loss of time in the design and printing process
  3. A proof is precise:
    All professional service providers nowadays work with proof printers that are recalibrated at short intervals. A media wedge with test report also provides clear metrological proof that the proof is correct and within the limits of the standard deviations.
  4. A proof is cheap:
    In the past, repro studios often charged almost 30 euros for an A4 proof. Nowadays, it only costs a fraction. Proofing costs are of little importance in the production process.
  5. A proof also shows the colors that the monitor does not show:
    In most agencies, hardware-calibrated proof monitors are in short supply. And TFTs or old tubes show colors, but unfortunately some. A proof also depicts colors that standard monitors cannot display, but which can be printed.
  6. A proof simulates newspaper as well as coated paper.
    If the same advertisement is to appear in the glossy brochure for the trade fair stand, in the trade fair news and in the special supplement in the local daily newspaper for the trade fair, then the three different colour results can be excellently simulated and presented in proofs in advance. And who knows: Perhaps the customer will then have the house brochure printed on picture printing instead of on uncoated paper due to the proof, or will choose a different motif for the newspaper ad. The proof shows it.
  7. A proof can do CMYK and more!
    Modern proofing systems can reproduce up to 98% of all Pantone colours and HKS colours in the proof.  This means that not only four-color, but also five, six and multicolor files can be proofed. Today, proofing is often done twice: once in CMYK plus corporate color in Pantone and once in CMYK and corporate color in CMYK. The client and agency can then decide whether the colour result is worth the extra charge for the fifth colour in the print.
  8. A proof is made of paper.
    Just like the product he’s simulating. A proof can be placed next to the print and compared under Normal. And to check it out, you can carry both to daylight, look at them in the candlelight and much more. A soft proof cannot do all this.

This is the first incomplete list. You know of other good reasons? We look forward to any comments and would be happy to add further points.

Related Posts

Which RGB working colour space is suitable for colour-consistent work?

In the early days of color spaces Apple and e.g. Photoshop up to version 5.5 set the monitor color space as working color space by default. But it soon became clear that a design office would be working with 10 Macs in 10 different color spaces. A neutral concept was needed.

There are many RGB Colour Spaces around. In the area of print media there are currently primarily three different variants: sRGB, AdobeRGB(1998) and eciRGB_V2.

The sRGB color space is widely used in digital cameras and is the industry leader in the consumer segment. Problem for printing: sRGB is a relatively small color space, and does not cover the color possibilities of modern offset printing systems and digital printers. Since offset printing profiles such as ISOCoated_v2 have a much larger color space, it makes little sense to perform retouching in sRGB.

From our point of view eciRGB_V2, a further development of eciRGB, is optimal. This color space has been specially created for use in the printing sector and offers some strengths:

  • It covers the colors of all modern printing color spaces (offset, gravure, web offset, newspaper), but is not much larger and therefore does not give away any resolution.
  • Equal shades of red, green and blue result in neutral shades of grey
  • Between 0/0/0 and 50/50/50 there is roughly the same distance as between 50/50/50 and 100/100/100.
  • The white is 5000 Kelvin and the gamma is 1.8 Kelvin.

The eciRGB_v2 color space can be downloaded free of charge from the pages of the European Color Initiative (ECI).

The AdobeRGB 1998 color space, which has been widely used by Adobe since Photoshop 5.5 and today in all parts of the Adobe product range, is also well suited for the printing sector, but works with a gamma of 2.2 and is designed for degrees of whiteness from D50 to D65. All common print color spaces can also be well mapped in AdobeRGB 1998. You can find Adobe documentation on this color space here.

Related Posts

Softproof – opportunity or risk?

Softproof means: The correct color display of a printed product on a monitor. Both a standardized print, e.g. according to process standard offset printing, can be simulated – e.g. a later offset print according to ISOCoatedV2 can be simulated correctly in colour on the screen – and the output on digital terminals such as LFP systems in advertising technology.

From a technical point of view, soft proofs are now well controllable. The monitor technology is advanced enough to provide excellent displays with a high color gamut and consistent illumination even for a few hundred euros. For example, monitors in two branches of a company can be coordinated in such a way that the result displayed on the monitors corresponds exactly to each other at both locations, i.e. one image editor in Hamburg and one in Munich can talk about retouching the same file.

The problem: The fact that the two monitors emit the identical color and light result can be precisely controlled. The fact that the colleague in Hamburg is looking at the foggy Alster lake at a northern window, while the colleague in Munich moved the monitor to a southern window in the direction of the Isar river in sunshine, already shows the problem: The environment variables under which the softproof is viewed are not identical.

It is even more difficult when the soft proof is to be used in the pressroom to coordinate the production run. Many companies such as JUST offer modern solutions that can provide a soft proof directly at the press. However, the problem remains that the soft proof should be considered to be less than 10% away of the brightness of the press. While 2000 lux brightness was previously the standard for printers, JUST now writes: “The comparison of soft proofs on monitors with prints and hard proofs is regulated in accordance with ISO 12646. The light conditions basically correspond to ISO 3664, but the brightness must be adjusted to the limited luminance of the monitor, which ideally is > 120 cd/m². ”

Two scenarios therefore arise at the printing press: Either the printer is “in the light” and can then match the print with a contract proof printed on paper, or it is “in the dark” and can match the print with the soft proof. The difficulty of matching paper and monitor – and these are two completely different and difficult to compare media – is compounded by the difficulty of the printer having to dim the light at the press by up to a factor of 10 to be able to match both a contract proof and a soft proof at the same workstation. From today’s point of view, this does not really seem practicable.

Conclusion: The soft proof is on the advance and will certainly sooner or later displace the classic contract proof from the market for reasons of speed and cost. However, due to the great technical lighting and haptic differences between the monitor and the illuminated sheet of paper, a widespread introduction is still a long way off. After all, anyone who has ever performed a color match on a printing press can imagine that a match to the contract proof on the one hand and to a soft proof monitor on the other hand is difficult to imagine at the same time.  The contract proof will therefore also have to remain the first choice in the near future in order to be able to carry out colour-accurate proofing of the printing result in the pressroom.

Related Posts

Embed profiles for proofing? Yes or No?

The question often arises whether color profiles should be embedded in the PDF files for proofing.

To answer the question, you have to get some answers: The proof should simulate the subsequent offset printing. For offset printing, with few exceptions, the imagesetters have been configured so that a 70% black in the file is displayed as 70% black on the printing plate, no matter what profile was specified in the file. It didn’t matter whether it was coated paper or uncoated paper: 70% in the file corresponded to 70% on the plate, the choice of the paper printed on resulted in the colour representation.

The proof has also adapted to this: Most proofing service providers ignore embedded profiles, as long as the data is in CMYK and do the same as their print colleagues. Even with grayscale, the profiles are usually ignored and the grayscale is simply assigned to the CMYK black channel. Thus all CMYK and grayscale data are simply interpreted as if they had been created in the output color space. If “ISOCoated V2” is proofed, all images are treated as such, and if “PSOUncoated” is proofed, then the CMYK images are created in this color space.

This is excellent for the majority of files to be proofed. Only RGB colors contained in the data are problematic.
Since the RGB color space is considerably larger than most CMYK color spaces, it must be clear from which color space to convert to CMYK according to which criteria. Most proofing service providers specify a color space from which they convert by default if no RGB color space is defined. This can lead to difficulties: For example, many proof studios choose AdobeRGB as color space because it is large and optimized for offset printing; however, most images from digital cameras come from sRGB and these color spaces differ considerably. Therefore, it is important that the RGB color space and the rendering intend is embedded for a proof, otherwise the proofing software normally selects a color space for conversion to the CMYK color space to be proofed; and this color space is possibly not the one in which the data has be created.

Related Posts

Verifiability of GTIN codes in proofing

Depending on the selected setting, the GTIN lines in proofs are displayed smoother or less smooth. It is clearly visible that the modules are made up of many colours and that a considerable increase in width takes place especially within the narrow black lines. Normally a narrow black GTIN bar should correspond to the width of the white space.

Depending on the selected setting, the GTIN lines in proofs are displayed smoother or less smooth. It is clearly visible that the modules are made up of many colours and that a considerable increase in width takes place especially within the narrow black lines. Normally a narrow black GTIN bar should correspond to the width of the white space.

Proofing service providers are increasingly required to be able to display “verifiable” GTIN codes, i.e. barcodes in the proof.

The background to this is that especially the big german discounters like Aldi, Lidl, Hofer & Co. want to see a packaging proof from their suppliers in advance for approval. This packaging proof is not only visually assessed according to colour, but also the legibility of the printed EAN codes is evaluated using a measuring device and must meet certain criteria: Symbol contrast, modulation, decodability, defects, blemish: all this is measured and graded.

This involves two different risks for the advertising agency or the reproduction company that processes this data: Firstly – according to our information – in most cases the proofs are not viewed under D50 standard light, but under TL84 – the light under which the packaging will also be seen in the later sales situation. This is understandable, since the sales process takes place under TL84 and not under the standard light of a printer. On the other hand, retouching under TL84 is not mandatory, since the spectral behavior of “standard” neon means that it is not possible to produce such a reproducible and “color-accurate” result as under D50. In addition, a colour matching box with D50 and TL84 is available in very few companies, which makes it possible to view the result under both light conditions in the colour retouching.

Secondly, the proofed GTIN barcodes are measured by a measuring device and checked for their mechanical legibility. Whereas a few years ago a press proof was the standard for such tests, today mostly the digital proof is used, since it is much cheaper. But until now, the manufacturers of proofing software have always only paid attention to the representation of color, but never to the verifiability of black and white lines.

Especially with Fiery proofs, but also with GMG Color, the lines of the GTIN barcodes are usually reproduced in such a way that they correspond exactly to the black value of the required profile in terms of color, but only school grades of 3 or even 4 are achieved during the examination, depending on the discipline. Most scanner cash registers could still read and process these barcodes without problems. However, ALDI Süd or Hofer with their own GTIN codes require at least a second grade in all disciplines: The proofs all fall through the test grid of the discounters. In particular, the decodability of EAN codes has probably not been of particular importance to proof manufacturers up to now.

After detailed tests, the width increases of the GTIN bars in the digital proof and the blurring of these bars seem to be the biggest problem for the verifiability of the codes. Farbproofs.de has developed a solution together with one of the testing companies for barcodes that makes it possible to print testable GTIN codes in accordance with the strict ALDI standards, which also comply with the current proofing standards. A proof is therefore sufficient for colour matching and for checking the GTIN numbers. However, the EAN must be created and edited specifically for this purpose. This still costs far less than a conventional proof, but it is not satisfactory.  Manufacturers of proofing software such as EFI and GMG Color are therefore called upon to improve the calculation of black and white line representations in writing and GTIN codes.

Until now, the focus has always been on color accuracy, but the proof increasingly demands services that were previously reserved for proofing. At costs of 5-10 EURO for a digital proof in DIN A4 format and 150-300 EURO for a proof in the same format this is more than understandable.

An article with tips for the creation of EAN / GTIN codes for graphic designers and the problems of verifiability of EAN and GTIN codes for e.g. Aldi, Hofer, Lidl and Co can be found here.

 

Related Posts

What data should I give for proofing?

A proof is suitable for two types of color control: firstly, during the creation or retouching phase, e.g. to reconcile a color retouched image with the original, and secondly to check the final data directly before printing.

For control proofs during the data creation of a project, the data format usually does not matter. Whether PDF, JPEG, TIFF; EPS, PS or even PSD… Many proofing companies accept a variety of data formats. For a correct evaluation of the result, however, it is important to proof in the color space in which the print product is also created later. Data for a letterhead should therefore be proofed in ISOUncoated or PSOUncoated, while products printed on image printing paper should be proofed in ISOCoatedV2. For yellowish paper, newsprint or gravure printing, there are many other profiles for which a proof can be produced. You can find a good overview of the current proof profiles here. It is also important that the proof format and the final print format do not differ too much. Only in this way is a correct check possible.

When the brochure has been laid out or the catalogue production has been completed, a proof should be prepared again for the final check by the customer. This proof is then created with exactly the same data that is also sent to the print shop. This is usually a PDF X/3:2002 file, as this is the preferred data format for printers. If the pages are delivered to the printer with bleed marks and bleed, then the proofs should actually be created in exactly the same way. The finished proofs can then first be used as approval for the customer, and secondly for checking the OK sheet in the print shop. This ensures that no unpleasant surprises wait for the customer (what does the colour look like????) or the printer (why does the customer make a complaint?????) after printing and bookbinding.

Related Posts

Can spot colours be proofed?

Since many printed matter contains spot colours such as Pantone or HKS, the question often arises whether these colours can be proofed at all. The answer is “no”. Only an approximate simulation of these colors is possible.
The reason: Each special ink is a specially mixed, “real” ink and therefore cannot be mixed from the 4 printing inks (cyan, magenta, yellow and black).

Today, modern proofing machines have up to 12 different printing colours and, in addition to the classic primary colours, also have, for example, orange and green and violet as real colour pigments in the machine. Proof printers such as the Epson SureColor P9000V are therefore capable of displaying significantly larger color spaces than, for example, ISOCoatedV2. The spot color simulation in these devices is therefore sometimes very good when controlled via a Contone driver, which can access the entire color space of the proof printer. Epson himself points out, for example, that “98% of all Pantone colors” can be covered. This may be doubted, but a number of over 90% of all Pantone colors is realistic from our point of view.

In the past, Pantone and HKS colors were simply converted by the proofing systems to CMYK and then simulated in the standard color space, i.e. mostly ISOCoatedV2. The representation of the colors here is mostly completely insufficient. For the reproduction of Pantone and HKS colours in a proof it is therefore immensely important to have a modern proof printer with many colours and a high colour gamut and a modern proofing software which is also able to precisely control the printed gamut.

Differences in the quality of the simulation of spot colors can quickly be seen in the different printing systems: If the proofing service provider prints with an older 6-color or 8-color system (Cyan, Light Cyan, Magenta, Light Magenta, Yellow and Black or Light Black), spot colors are simulated worse than, for example, with a modern 11-color system with Cyan, Light Cyan, Orange, Yellow, Magenta, Light Magenta, Photo Black, Matte Black, Light Black, Light light Black and Green.

The higher simulation quality of the spot colors is generated by the fact that orange, for example, already exists as a separate color and does not have to be mixed from magenta and yellow before the spot color simulation.

Of course, it must be said that there are limits, especially in the area of metallic or fluorescent colours; these colours are currently not reproducible in proofing.

The spot-colour simulation of gradations is also critical

In most proofing systems, only the 100% values of a Pantone or HKS color are underlaid. If, for example, a font logo with 100% color application of a Pantone color is to be simulated, this is precise and is well represented in most proofing systems.

However, it becomes more difficult if the logo contains not only 100% areas but also a 30% Pantone colour area, since this is not defined in the proofing system, but is simulated by the proofing system. In some cases, considerable deviations from e.g. HKS colour fans can be observed.

It becomes even more difficult if, for example, a grayscale TIFF lies on a 100% HKS area and overprints. For the graphic professional it is immediately comprehensible that the HKS surface simply has to become correspondingly darker at this point due to an overprinting 30% black. However, the proofing software must recognize this effect correctly, calculate it correctly and then simulate it correctly with the 11 colors available from the proof printer. It is easy to understand that countless errors can occur. And the supreme discipline: 7-colour Pantone files with lots of overlaying and overprinting Pantone colours or HKS colours with overprinting CMYK elements can at best be calculated even by the most modern proofing systems, but can by no means be colour-accurately simulated.

The bad news is that a proof with spot colors is therefore never as color-binding according to the current state of the art and varies more depending on the proofing system.

But the good news is that spot colors, especially solid colors, can now be simulated well by modern proofing systems. A modern proofing system therefore also offers the possibility of getting a realistic impression of spot color prints at a fraction of the cost of a test print on a offset press.

Related Posts