Current Proof Standards 2024

Offset and Newsprint

ISO Coated v2 (ECI) / ISO Coated v2 300% (ECI)
Profile: ISOcoated_v2_eci.icc
Standard for glossy and matte coated paper
Paper: Types 1 and 2, gloss and matte coated
Tone value increase curves A (CMY) and B (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA39L

ISOUncoated
Profile: ISOUncoated.icc
Standard for uncoated white natural paper
Paper: paper grade 4, uncoated white offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA29L

PSOCoatedV3 / Fogra 51
Profile: PSOcoated_v3.icc
The successor of ISOCoatedV2 for glossy and matte coated paper with moderate optical brighteners
Paper: paper type 1, glossy and matte coated paper with moderate optical brighteners (8-14 DeltaB according to ISO 15397)
Tone value increase curve A (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=95;1,5;-6
Characterisation Data: Fogra51 / Fogra 51 Spectral (M1)

PSOuncoated_v3 / Fogra 52
Profile: PSOuncoated_v3_FOGRA52.icc
The successor of PSOUncoated for uncoated, wood-free natural paper with many optical brighteners
Paper: Paper type 5, wood-free uncoated, with high OBAs (more than 14 DeltaB according to ISO 15397)
Tonal value increase curves C (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=93.5;2.5;-10
Characterisation Data: PresumablyFogra52L (M1)

PSO Uncoated ISO12647 (ECI)
Profile: PSO_Uncoated_ISO12647_eci.icc
The successor of ISOUncoated
Paper: Type 4, uncoated white offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA47L

PSO LWC Improved (ECI)
Profile: PSO_LWC_Improved_eci.icc
Improved LWC paper, glossy coated, successor of ISO Web Coated
Paper: Paper type 3, improved gloss coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA45L

PSO LWC Standard (ECI)
Profile: PSO_LWC_Standard_eci.icc
LWC paper standard, glossy coated
Paper: Paper type 3, standard glossy coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA46L

ISO Web Coated
Profile: ISOwebcoated.icc
LWC paper standard, glossy
Paper: Paper grade 3, standard glossy coated (LWC), dot gain curves B (CMY) and C (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA28L

ISO Uncoated Yellowish
Profile: ISOuncoatedyellowish.icc
Uncoated natural paper slightly yellowish (chamois)
Paper: Type 5, uncoated yellowish offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA30L

SC Paper (ECI)
Profile: SC_paper_eci.icc
Paper: SC (Super Calendered) Paper
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA40L

PSO SC-B Paper v3
Profile:  PSOsc-b_paper_v3_FOGRA54.icc
SC-B Paper, Super calendered Papier, satin-finished
Paper: Commercial offset, SC-B paper (super-calendered, satin), printing condition PC6
Tone value increase curve 2013-B, white measurement base.
Characterisation Data: FOGRA54

PSO MFC Paper (ECI)
Profile: PSO_MFC_paper_eci.icc
Paper: MFC, Machine finished coating
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA41L

PSO SNP Paper (ECI)
Profile: PSO_SNP_paper_eci.icc
Newsprint
Paper: SNP, Standard newsprint, heatset web offset printing
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA42L

WAN-IFRA Newspaper 26
Profiles with different max. ink application: 180%: TIC180_WANIFRA_NP26.icc,  200%: TIC200_WANIFRA_NP26.icc,  220%: TIC220_WANIFRA_NP26.icc
Colour space: Primary and secondary colours according to ISO 12647-3: 2013
Maximum paint application: 180%/ 200%/ 220%

WAN-IFRAnewspaper 26v5
Profile: WAN-IFRAnewspaper26v5.icc
Colour space: Primary and secondary colours according to ISO 12647-3: 2013
Dot gain: 26%
Maximum paint application: 220%
Maximum GCR: Long black with an early black start

ISONewspaper 26v4
Profile: ISONewspaper26v4.icc
Newspaper
Paper: paper type SNP, standard newsprint, heatset web offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: IFRA26

PSO Coated NPscreen ISO12647 (ECI)
Profile: PSO_Coated_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: Paper types 1 and 2, glossy and matt coated paper, non-periodic screen (NPscreen), 20 µm,
Tone value increase curve F (CMYK) from ISO 12647-2:2004
Characterisation Data: FOGRA43L

PSO Coated 300% NPscreen ISO12647 (ECI)
Profile: PSO_Coated_300_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: type 1 and 2, gloss and matte coated
non-periodic screening (NPscreen), 20 μm
Tone value increase curve F (CMYK) as defined in ISO12647-2:2004
Characterisation Data: FOGRA43L

PSO Uncoated NPscreen ISO12647 (ECI)
Profile: PSO_Uncoated_NPscreen_ISO12647_eci.icc
Uncoated white natural paper, non-periodic screening (NPscreen), 30 μm
Paper: type 4, uncoated white offset
Tone value increase curve F (CMYK) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA44L

Improved Newsprint, INP / PSO INP Paper (ECI)
Profile: PSO_INP_Paper_eci.icc
Commercial and specialty offset, INP paper (improved news print), positive plates
Paper: improved newsprint
Tone value increase curves C (CMY) and D (K), white measurement base
Characterisation Data: FOGRA48L

PSO Coated v2 300% Glossy laminate (ECI)
Profile: PSO_Coated_v2_300_Glossy_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent gloss foil lamination (typical OPP gloss foil 12-15 μm), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching gloss finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA50L

PSO Coated v2 300% Matte laminate (ECI)
Profile: PSO_Coated_v2_300_Matte_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent matt film lamination (typical OPP matt film 15 μm with medium opacity ~70%, i.e. brightening ΔL* = 6 on black solid tone after finishing), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching matt-finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA49L

PSO Coated v3 Matte laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Matte_laminate.icc
 The ECI offset profile PSO_Coated_v3_Matte_ laminate.icc is based on the characterisation data set “FOGRA56.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with matte film (typical OPP matte film 15 μm with average opacity ~70%, i. e. brightening by ΔL* = 6 on the black solid after lamination), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA56.txt

PSO Coated v3 Glossy laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Glossy_laminate.icc
The ECI offset profile PSO_Coated_v3_Glossy_ laminate.icc is based on the characterisation data set “FOGRA57.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with glossy film (typical OPP glossy film 12–15 μm), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA57.txt

eciCMYK (Fogra 53) – CMYK exchange colour space
Profile: eciCMYK.icc
FOGRA53 is a CMYK exchange colour space and is used for colour communication in print production.

eciCMYK_v2 (Fogra 59) – CMYK exchange colour space New 2020!
Profile: eciCMYK_v2.icc
eciCMYK_v2 (Fogra 59) is the successor of eciCMYK (Fogra 53).

Heaven42
The absolute white tone opens up the greatest scope of colours for design and printing afforded by any coated paper worldwide. The perfect foundation for extreme contrasts and combination with ultra white natural papers. The absolutely white paper shade of heaven 42 impacts on the printing process as well as on the pre-press stage. With the same colouring and dot gain, the printed image can look significantly colder if separation remains unchanged (e.g. with
ICC-profile “IsoCoated_v2”).

We proof Heaven42 on proof paper with optical brighteners and measure the Proof in M1 Standard. Please note: Our Heaven42 proofs represent a good simulation of the original Heaven42 ICC Profile, but are not – as an ISOcoatedv2 Proof – colouraccurate and legally binding.

Scheufelen offers two ICC-Profiles for download, we proof the colour profile of Heidelberger Druck (“_HD”).
Profile: Heaven42_AM_U280_K98_G80_HD.icc (Heidelberger Druck)
Ink Coverage: ~280 % (U)
Black: GCR , 80 % (G)
Black Generation: 98 % (K)
Proofpaper: EFI Proof Paper 8245 OBA Semimatt
Characterisation Data: Made from Reference Data
Measuring method: M1 with optical brighteners (OBAs)

PaC.Space
Profile: PaC.Space_CMYK_gravure_V1a.icc
PaC.Space is the first common colour standard for packaging gravure printing, which enables to process an interface from the supplied prepress data or printer-specific requirements.
Paper: Coated substrates and films for packaging gravure
Characterisation Data: FOGRA_PaCSpace_MKCheck11

Metal-Printing

Metal-Printing MPC1 FOGRA60 New 2022!
Profile: Metal-Printing_MPC1_FOGRA60.icc
For the printing condition “Metal-Printing on white coated metal 1 (MPC1)” the profile “Metal-Printing_MPC1_FOGRA60.icc” based on the Fogra colour characterisation data set FOGRA60.
Characterisation Data: FOGRA60.txt

Rotogravure Profiles

ECI Rotogravure profiles for the Process Standard Rotogravure (PSR)

PSR LWC Plus V2 M1 v2 (2019)
Profile: PSR_LWC_PLUS_V2_M1_v2.icc
The Successor of PSR LWC Plus V2 (PSR_LWC_PLUS_V2_PT.icc)
Paper: Roll gravure, LWCplus glossy coated
Measuring base: unprinted LWCplus paper
Characterisation Data: PSR_LWC_PLUS_V2_M1

PSR LWC Plus V2 (2009)
Profile: PSR_LWC_PLUS_V2_PT.icc
The successor of HWC
Paper: Improved LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_PLUS_V2

PSR LWC Standard V2 M1 (2019)
Profile: PSR_LWC_STD_V2_M1.icc
The successor of PSR LWC Standard V2
Paper: Rotogravure, LWC
Measuring base: unprinted LWC paper (self backing)
Charakterisierungsdaten: SR_LWC_STD_V2_M1

PSR LWC Standard V2 (2009)
Profile: PSR_LWC_STD_V2_PT.icc
Paper: LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_STD_V2

PSR SC Plus V2 M1 (2019)
Profile: PSR_SC_PLUS_V2_M1.icc
The successor of PSR SC Plus V2
Paper: Rotogravure, SC Plus
Measuring base: Unprinted SC Plus paper
Characterisation Data: PSR_SC_Plus_V2_M1

PSR SC Plus V2 (2009)
Profile: PSR_SC_PLUS_V2_PT.icc
Paper: whiter super calandered paper
Characterisation Data: ECI_PSR_SC_Plus_V2

PSR SC Standard V2 M1 (2019)
Profile: PSR_SC_STD_V2_M1.icc
The successor of PSR SC Standard V2
Paper: Roll gravure, SC paper
Measurement document: Unprinted SC paper
Characterisation Data: PSR_SC_STD_V2_M1

PSR SC Standard V2 (2009)
Profile: PSR_SC_STD_V2_PT.icc
Paper: super calandered paper
Characterisation Data: ECI_PSR_SC_STD_V2

PSR MF V2 M1 (2019)
Profile: PSR_MF_V2_M1.icc
Paper: Rotogravure, paper type MF or INP, 55 g/m2
Measuring base: unprinted MF or INP paper
Characterisation Data: PSR_MF_V2_M1

PSR News Plus
Profile: PSRgravureMF.icc
PSRgravureMF is now reffered to as News Plus
Paper: Paper News Plus
Characterisation Data: PSRgravureMF_ECI2002

US / International Proof Profiles

GRACoL2006_Coated1v2
Profile: GRACoL2006_Coated1v2.icc
GRACol interpretation of ISO 12647-2.
Paper: Type 1 and 2, glossy and matt coated paper
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: GRACoL2006_Coated1, a derivation from Fogra 39

SWOP2006_Coated3v2
Profile: SWOP2006_Coated3v2
SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper.
Paper: Thin, coated paper
Tonwertzunahmekurven: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated3, a derivative of Adobe USWebCoated v2

SWOP2006_Coated5v2
Profile: SWOP2006_Coated5v2
Other SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper
Paper: Thin, coated paper with a slightly different white tone to SWOP2006_Coated3V2
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated5, a derivative of Adobe USWebCoated v2

Japan Color 2011 Coated
Profile: JapanColor2011Coated.icc
The new standard of Japan Printing Machinery Association (JPMA).
Characterisation Data: JapanColor

Japan Color 2001 Coated
Profile: JapanColor2001Coated.icc
Printing process definition: ISO 12647-2:1996, sheet-fed offset printing, positive plates
Paper: Type 1, (coated, 105 gsm), screen frequency 69/cm.

SWOP 2013 C3
Profile: SWOP2013_CRPC5.icc or SWOP2013C3-CPRC5.icc
The profile is measured in M1 mode in consideration of optical brighteners and is printed on proofing papers with optical brighteners.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: Grade #3 paper
Characterisation Data: CGATS21-2-CRPC5

GRACoL 2013 Uncoated
Profile: GRACoL2013UNC_CRPC3.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC3

GRACoL 2013
Profile: GRACoL2013_CRPC6.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 320%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19,1%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC6

Why is the embedding of RGB profiles so important?

Comparison between eciRGB_V2 (white) and sRGB

A few days ago we received a call from a customer in the field of design, who sent open Adobe InDesign data in ISOCoatedV2 300% with contained RGB images to the production company for a complex CD production on the advice of the producing company (“The printing company still has a prepress stage, which can then prepare your data optimally…”). The result of the finished printed CD booklets and inlays did not correspond at all to the calibrated monitor image of our customer, the client was also unhappy and requested the print data about the production company from the print shop responsible for the print to troubleshoot. Data in the “US Web Coated” color space with 350% ink coverage came back from the printer. For troubleshooting, the customer then had a proof of his data created by us, but had chosen the settings “Convert to target profile (retain values)” as usual when writing the proof PDF; we thus received completely CMYK data, of which we produced a proof according to ISOCoatedV2 300%, which completely met our customer’s expectations. So it seems that the designer created the data correctly and printed the print shop incorrectly.

On closer inspection, our error analysis revealed two serious weaknesses:

  • On the one hand, the obviously wrong profile conversion of the print shop with InDesign CS2 to “US Web Coated”, a completely outdated profile never used in Europe, which was delivered with early Creative Suite versions and was probably never adapted due to a lack of competence on the part of the print shop.
  • On the other hand, the open InDesign file of our customer, which he had sent to the production company, contained RGB images without a profile (DeviceRGB), which cannot be safely interpreted.

In this case, a complaint of the designer to the printing company will of course be difficult, as on the one hand, non-profiled RGB data were sent to the production company, and on the other hand, no print PDF generated by the data creator in the correct output color space ISOCoatedV2 300% was supplied.

If this had been done, one could at least have argued that the expected color of the production print would have been comprehensively known. Thus, one can only refer to the fact that the printer would have had to ask the designer for RGB data without an embedded color profile, and should not have assigned the data somehow to a profile “blindly”. The fact that the print shop with its crude US Web Coated workflow certainly did not create a correct print file, but a wrong one for the output, can indeed be stated, but the print shop can always talk its way out to “systems with in-house standard”.

How do we deal with RGB data at Proof.de?

If we receive a PDF file that contains RGB images, the next step is to check if the file is a valid PDF/X-3 or PDF/X-4. If this is the case, we check whether all input RGB profiles are correctly marked with color space (sRGB / AdobeRGB / ECI-RGB-V2 etc.) and rendering intent, then we check whether the correct output color space was used as output intent and whether also contained CMYK data have the correct input profiles. If yes, then we proof the file with the settings: “Consider all input and output color spaces”.

In this case, the file is reproduced 100% exactly as our customer created and defined the color profiles. If he has made a mistake and e.g. marked an image with a wrong RGB profile, this will also be “incorrectly proofed” exactly as correctly.

If RGB data should not contain a profile, e.g. if they are created in Device RGB, we generate a “data incorrect” e-mail in which we explain our procedure as follows:

“Dear customer, the data check has shown that RGB elements are contained in your data. RGB elements can only be safely interpreted in the proof if they are marked with a color profile and a rendering intent. This is the case, for example, with correct PDF/X-3 and PDF/X-4 data. The correct output intent must also be specified.

At least one of these criteria does not seem to be the case for your file. The safest way would be to convert the contained RGB data to CMYK. This has the advantage that you have control over the conversion and can view the CMYK result again in Acrobat before uploading the file again for proofing. We can then reliably use your CMYK values for the proof. To do this, call up the current order in your customer account, delete the incorrect data and upload the corrected data.

If, for example, the RGB element should only be a small image that is not relevant for the overall impression of the proof, or if you do not have another file available for the proof, then of course we can also use your RGB data for the proof. If available, we use your RGB source profiles and rendering intents, otherwise we use the sRGB standard and the rendering intent “relatively colorimetric with depth compensation”, which in most cases will lead to correct proof results. If you would like us to proof the supplied RGB data in this way, please let us know. Please do not hesitate to contact us if you have any questions. Best regards, your proofing team”.

In our case, the CD production case would also not have occurred in the proof, as we reject RGB data not provided with an ICC profile with the error message mentioned above, and do not convert them, as we cannot predict precisely how our customer would have liked the data to be converted.

We are aware that our approach is not 100% the ultimate best approach in all cases, but to the best of our knowledge and belief it is best in line with market practice and the expectations of our customers.

However, we are also happy to accept your individual requirements and circumstances. Give us a call or send us an email and describe your processing requirements.

Colour Management Consulting and Expertise

Colourmanagement Consulting
Colourmanagement Consulting

By the way: We are happy to put our knowledge and data competence at your service: If you also have a problem, a question about print data, data preparation, or – as in the above example – a misprint has already occurred and you need external expertise and assistance for the complaint: Give us a call. We will be happy to advise you and help you where we can help. We will charge you for our advice and analysis at an hourly rate of EUR 90,- plus VAT, and you will be billed for 15 minutes each. An initial consultation and assessment is of course free of charge.

WordPress Cookie Plugin by Real Cookie Banner