New edition of ISOCoatedV2 in M1 in sight?

Even almost 9 years after the introduction of the successor colour space PSOCoatedV3, ISOCoatedV2 / FOGRA39 is still the most widespread colour space in Europe. We at Proof GmbH count around 200 jobs from time to time for the German Printing and Media Industries Federation, among others. In the last count, proofs in ISOCoatedV2 accounted for around 68% of all proof jobs at our company. This is a clear sign of the continued widespread use of the colour space. ISOCoatedV2: From the classic colour space to the beacon of the …

Read more

Specular Component Spectrophotometric Measurement SCI / SPIN and SCE / SPEX explained

Sphere Head Spectrophotometers and Specular Component explained

The sphere head technology and the differences between SCI / SPIN or SCE / SPEX are explained using the measurement of glossy and diffuse objects.

HLC Colour Atlas freieFarbe proof.de 2

CIELAB HLC Colour Atlas available in the Proof.de Shop

It has taken almost a year, but we are all the more pleased now: The “CIELAB HLC Colour Atlas” is completed and can be ordered in our shop. The HLC Colour Atlas is a open source, high-precision colour system based on open standards.

Read more

Fogra 51 and Fogra 52 Beta Proofs available

By switching to the new Fiery XF 6.1 and the use of the new X-Rite SpectroProofer ILS-30 measuring instruments, we are now able to proof the current beta versions of the new printing standards Fogra 51 and Fogra 52. Since the current proofing profiles are available only in preliminary beta versions, the versions are of course not color binding and legally binding. Nevertheless, interested agencies and printers can get a picture of the current state of development and evaluate the coming changes of the OBA proofing papers used better match the colors …

Read more

Detail of X-Rite SpectroProofer ILS30 Measuring head and comparison to X-Rite Spectroproofer ILS20

Proof.de Introduced new measuring technology: X-Rite SpectroProofer ILS30

With the new SpectroProofer ILS30 made by X-Rite, Proof GmbH has created the basis for automated measurements and Proof verifications according to M1 standard. Proofs with optical brighteners (OBAs – Optical Brightning Agents) can now be measured. Contrary to earlier announcements, the new SpectroProofer are also able to measure the current proofing standards as before in M0 measurement standard.

Because of the new ILS30 SpectroProofer, the layout of the Ugra / Fogra media wedge was slightly modified. For a comparison between old and new media wedge, see the image below.

Read more

Anaglyph glasses - transmitted spectrum of the two foils

Reproduction of anaglyph images and line drawings

Already a few weeks ago we received an unusual request: The musician and aspiring art student Tobias Weh from Osnabrück experimented with line drawings based on anaglyphs and achieved very good results on the monitor. He created superimposed line drawings, which then delivered a different image when viewed through the left eye than when viewed through the right eye. The question was whether this could be reproduced better with the high color range of a proofing system than with a simple domestic inkjet printer.

Since such questions are of course very interesting at first sight, we were quickly prepared to support Mr Weh in his work. To get closer to the matter, we use an i1 Pro 2 and BabelColor Color Translator & Analyzer to measure the spectra for the two films, which are transmitted through standard anaglyph glasses.

Anaglyphenbrille - Durchgelassenes Spektrum der beiden FolienActually a very satisfactory result. By choosing two colours as printing in the spectral ranges of 450 to 500 nanometres for blue and 650 to 700 nanometres for red, it should actually be possible to achieve quite a good result.

Read more

How exactly can printing ink be measured?

For some years now, the possibilities of colorimetric measurement of printing inks have become simpler and cheaper. And so it is often believed that measuring printing inks is simple, inexpensive and, above all, highly accurate. And this also across a wide variety of brands and generations of measuring devices. Is that true?

If you look at a few studies, that does not necessarily seem to be the case. IFRA, for example, requires that when measuring BCRA ceramic tiles the colour differences between different measuring instruments should be below Delta-E 0.3. In reality, however, things looked different. In a Nussbaum study, 8 out of 9 measurements were for a Delta-E greater than 2.0; in a Wyble & Rich study, the deviations were between Delta-E 0.76 and 1.68. But why are the deviations so large?

On the one hand, the measuring instruments differ in the way they illuminate the surfaces to be measured. This is important in two respects: On the one hand, measurements can vary greatly depending on the material, for example, because light is emitted and measured from only one light source onto the measuring surface. If a measuring instrument has only one lamp, which, for example, radiates at an angle of 45 degrees onto the measuring surface and whose reflection is measured, then the measurement can deviate by up to Delta-E 3.0 if you only rotate the measuring instrument about its own axis. If a left-handed person and a right-handed person measure the same tiles with the same measuring device, then just by holding the measuring device differently and by the different lighting angles of the tiles a measurement can be completely different.

Read more

The proof is much darker than the image on my monitor. Why?

Customers are often unsettled when they hold a proof in their hands. “The proof of the picture is much darker than the picture on my monitor. Why is that so? And what do I do now?” There are many possible reasons for a deviation between the proof and, for example, the monitor display: The monitor is not calibrated Only calibrated monitors can accurately display color. When I buy a cheap monitor and connect it to my computer, I definitely can’t see any real color. As a rule of thumb, only …

Read more

Why monitor and paper don’t get along when it comes to colour.

Colour is colour, you’d think. That’s right. But have you ever tried to explain the colour of your new car or your new red wallet to a friend on the phone? You will notice that human colour recognition and the reproduction of the same in another medium is very difficult. The same applies to computers – better: monitors, and printers – i.e.: laser printers, inkjet printers or newspaper printing or offset brochure printing. Why is the red on a monitor different from exactly the same red printed on paper? It’s …

Read more

Comparison between eciRGB_V2 (white) and AdobeRGB 1998

Which RGB working colour space is suitable for colour-consistent work?

In the early days of color spaces Apple and e.g. Photoshop up to version 5.5 set the monitor color space as working color space by default. But it soon became clear that a design office would be working with 10 Macs in 10 different color spaces. A neutral concept was needed. There are many RGB Colour Spaces around. In the area of print media there are currently primarily three different variants: sRGB, AdobeRGB(1998) and eciRGB_V2. The sRGB color space is widely used in digital cameras and is the industry leader …

Read more

Softproof – opportunity or risk?

Softproof means: The correct color display of a printed product on a monitor. Both a standardized print, e.g. according to process standard offset printing, can be simulated – e.g. a later offset print according to ISOCoatedV2 can be simulated correctly in colour on the screen – and the output on digital terminals such as LFP systems in advertising technology. From a technical point of view, soft proofs are now well controllable. The monitor technology is advanced enough to provide excellent displays with a high color gamut and consistent illumination even …

Read more

D50 is not the same as D50: Standardized light and ISO3664:2009

Since 2009, printers and proofing service providers have increasingly encountered a new D50 lighting standard: ISO 3664:2009, which defines how the new D50 standardized light, under which proofs and print products are to be evaluated, looks like. The new standard light contains UV components that address the optical brighteners that are frequently used in offset papers nowadays.

The result: next to a bluish-white glowing sheet in the pressroom, there is a yellowish-pale proof.

What is the reason for this? The standard came sort of as a surprise and was poorly communicated within the industry. All proofing substrates available from proofing service providers contain no or almost no optical brighteners – this was previously a requirement. And under the old D50 standardized light – which did not contain any UV components – the proof and production run looked identical, since the optical brighteners were not addressed in the production run. Proofing and production printing can no longer be compared on all new presses that are already equipped with light tubes of the new standard: This looks completely different, the differences in paper white are absolutely obvious.

Read more

Standardized light and metamerism effect

A proof is only as good as the light under which it is viewed. Just going to the window or switching on the light at dusk is useless: between December and July, between 8 am and 8 pm, between cloudy and sunny days there is a huge difference in the lighting, which makes any colour evaluation impossible. And if you switch on the light, you normally switch on a bulb with 2700 Kelvin – or even worse: an energy-saving neon bulb that somehow shines in any spectra… a disaster! The …

Read more

WordPress Cookie Plugin by Real Cookie Banner