Barcode Check: New in ISO 15416:2016

Proof.de: New criteria for barcode checking according to ISO/IEC 15416:2016

The “ISO/IEC 15416:2016 – Information technology – Automatic identification and data capture methods – Test specifications for bar code print quality – Linear symbols” specifies the current criteria for testing bar codes. ISO 15416:2016 replaces ISO 15416:2000 and defines modified bar code quality calculations for some areas. During the barcode check by Proof GmbH, barcodes are checked according to the current criteria of ISO 15416:2016.

An overview of the most important changes in ISO 15416:2016:

  • Proof.de: New criteria for barcode checking according to ISO/IEC 15416:2016Four of the seven barcode parameters – symbol contrast, modulation, defects and decodability – were previously graded by whole numbers, so the evaluation could be 0, 1, 2, 3 or 4. With the adoption of the ISO/IEC 15416:2016 standard, evaluations are now graded to one decimal place. So under the old standard there were only five possible parameter gradations (0/1/2/3/4), now there are forty-one (0.0/0.1/0.2 etc. to 4.0).
  • This also changes the rating with letters. Since this is even less precise than the evaluation by numbers, it is omitted in the new standard, whereby the usual letter notes can still be provided for information purposes. However, the nominative standard must be given as a decimal number.
  • Defects are now calculated methodically differently. A defect is a light spot on a dark bar or a dark spot on a light surface. If a defect was at the edge of a bar or a gap, the old standard gave a worse rating than the same defect that was further from the edge. The calculations in the new ISO/IEC 15416:2016 standard describe the effects on the readability of the barcode much more accurately.

The new calculation methods lead in some cases to a higher averaged score for the barcode compared to the method described in ISO 15416:2000.

We have also updated our REA TransWin 32 evaluation software to the latest version and also provided our barcode checking device with a firmware update.

Order Barcode Checks for EAN13 and EAN8 Codes in our Proof Shop

 

 

EAN / GTIN test e.g. for ALDI 3B verification according to ISO/IEC 15416, ISO/IEC 15420

From now on we offer our customers the service to check EAN 8 and EAN 13 codes metrologically. This is important, for example, if you deliver articles for ALDI or HOFER, for which you have to provide proof of readability according to the so-called “3B” standard or better. You can order such an EAN GTIN barcode test report here in our shop.

Proof.de Test report according to ISO/IEC 15416 / ISO/IEC 15420 according to 3B criteria e.g. for barcodes for ALDI and Hofer. The test report is created on the same day and sent to you as a PDF or by post.

For this purpose we check your EAN or GTIN code with a modern REA Check ER barcode checking device and prepare a test report according to ISO/IEC 15416 and ISO/IEC 15420:

  • Symbol contrast
  • Edge Contrast
  • Modulation
  • Rmin/Rmax
  • Defects
  • Decodability
  • Rest area Left
  • Rest area Right
  • Bar deviation
  • Code length

Other optional parameters are also checked:

  • PCS (SC)
  • Bright value (Rmax)
  • Bar
  • Gap
  • Mean value
  • Z-Module
  • Size
  • MF
  • CPI

For example, in the “Size” field you can see directly whether your code corresponds to the size SC2 preferred by ALDI, for example. We have attached an exemplary evaluation above.

For the measurements we need original packaging with your printed EAN / GTIN codes. All codes will be checked on the day of their arrival and the test reports will be sent to you the same day.

Create EAN / GTIN codes: Tips for graphic artists

EAN codes are standard on every product today. While in the good old days, shopowners themselves typed the prices into a cash register by hand, today scanner cash registers are the rule, which scan standardized EAN codes with a laser and thus clearly recognize the article and add it to the receipt.

EAN, by the way, stands for “European Article Number” and was replaced in 2009 by the global GTIN, “Global Trade Item Number”. The EAN or GTIN is a barcode that can be read automatically and read by barcode readers.

For graphic designers in Europe, two standards from the almost infinite number of EAN codes in use worldwide are primarily important in the product area. EAN 13 and EAN 8, i.e. a barcode of either 13 or 8 digits. What do these numbers actually mean?

Read more

Verifiability of GTIN codes in proofing

Depending on the selected setting, the EAN lines in proofs are displayed smoother or less smooth. It is clearly recognizable that the modules are built up by many colours and especially within the narrow black lines a considerable increase in width takes place. Normally, a narrow black EAN bar should correspond to the width of the white space in between.

Proofing service providers are increasingly required to be able to display “verifiable” GTIN codes, i.e. barcodes in the proof.

The background to this is that especially the big german discounters like Aldi, Lidl, Hofer & Co. want to see a packaging proof from their suppliers in advance for approval. This packaging proof is not only visually assessed according to colour, but also the legibility of the printed EAN codes is evaluated using a measuring device and must meet certain criteria: Symbol contrast, modulation, decodability, defects, blemish: all this is measured and graded.

Depending on the selected setting, the GTIN lines in proofs are displayed smoother or less smooth. It is clearly visible that the modules are made up of many colours and that a considerable increase in width takes place especially within the narrow black lines. Normally a narrow black GTIN bar should correspond to the width of the white space.
Depending on the selected setting, the GTIN lines in proofs are displayed smoother or less smooth. It is clearly visible that the modules are made up of many colours and that a considerable increase in width takes place especially within the narrow black lines. Normally a narrow black GTIN bar should correspond to the width of the white space.

This involves two different risks for the advertising agency or the reproduction company that processes this data: Firstly – according to our information – in most cases the proofs are not viewed under D50 standard light, but under TL84 – the light under which the packaging will also be seen in the later sales situation. This is understandable, since the sales process takes place under TL84 and not under the standard light of a printer. On the other hand, retouching under TL84 is not mandatory, since the spectral behavior of “standard” neon means that it is not possible to produce such a reproducible and “color-accurate” result as under D50. In addition, a colour matching box with D50 and TL84 is available in very few companies, which makes it possible to view the result under both light conditions in the colour retouching.

Secondly, the proofed GTIN barcodes are measured by a measuring device and checked for their mechanical legibility. Whereas a few years ago a press proof was the standard for such tests, today mostly the digital proof is used, since it is much cheaper. But until now, the manufacturers of proofing software have always only paid attention to the representation of color, but never to the verifiability of black and white lines.

Especially with Fiery proofs, but also with GMG Color, the lines of the GTIN barcodes are usually reproduced in such a way that they correspond exactly to the black value of the required profile in terms of color, but only school grades of 3 or even 4 are achieved during the examination, depending on the discipline. Most scanner cash registers could still read and process these barcodes without problems. However, ALDI Süd or Hofer with their own GTIN codes require at least a second grade in all disciplines: The proofs all fall through the test grid of the discounters. In particular, the decodability of EAN codes has probably not been of particular importance to proof manufacturers up to now.

After detailed tests, the width increases of the GTIN bars in the digital proof and the blurring of these bars seem to be the biggest problem for the verifiability of the codes. Farbproofs.de has developed a solution together with one of the testing companies for barcodes that makes it possible to print testable GTIN codes in accordance with the strict ALDI standards, which also comply with the current proofing standards. A proof is therefore sufficient for colour matching and for checking the GTIN numbers. However, the EAN must be created and edited specifically for this purpose. This still costs far less than a conventional proof, but it is not satisfactory.  Manufacturers of proofing software such as EFI and GMG Color are therefore called upon to improve the calculation of black and white line representations in writing and GTIN codes.

Until now, the focus has always been on color accuracy, but the proof increasingly demands services that were previously reserved for proofing. At costs of 5-10 EURO for a digital proof in DIN A4 format and 150-300 EURO for a proof in the same format this is more than understandable.

An article with tips for the creation of EAN / GTIN codes for graphic designers and the problems of verifiability of EAN and GTIN codes for e.g. Aldi, Hofer, Lidl and Co can be found here.

WordPress Cookie Plugin by Real Cookie Banner