D50
D50 is the standard lighting condition of the printing industry. It has a degree of whiteness of 5,000 Kelvin, which is the colour that glowing metal at 5,000 Kelvin would cast.
The portal for colour binding proofs, colour proofs, digital proofs, online proofs. Compact knowledge on colour management, graphics, measuring technology & more.
D50 is the standard lighting condition of the printing industry. It has a degree of whiteness of 5,000 Kelvin, which is the colour that glowing metal at 5,000 Kelvin would cast.
D65 is standardized viewing condition with 6500 K color temperature. It is the default setting for most monitors and is mainly used in color matching etc. for websites, so in media that are considered primarily to be viewed on the monitor.
In the printing industry, the standard light is D50 according to ISO 3664: 2009 standard, a warmer light than D65 with 5000 Kelvin color temperature, which is also used for color matching on the press and in the evaluation of proofs.
Delta-E is a unit for the colour distance between two colours.
Densitometers measure ink density and optical density.
A design grid is an auxiliary construction and helps to place the texts, pictures and graphics in the layout. It serves to standardize the document.
A Digital Proof (Contract Proof) is an ISO certified test equipment for the graphics industry. A digital proof simulates the colour of offset printing or gravure printing colour accurate binding within the tight tolerances of ISO 12647-7. Today, a digital proof is processed via a RIP and then produced with pigment inkjet printers on special proofing papers.
Digital proofs (correct: contract proofs) are an ISO-certified test equipment for the graphic arts industry. Digital proofs simulate the colourfulness of offset or gravure printing in a colour and legally binding manner within the narrow tolerances of ISO 12647-7. Today, they are almost exclusively calculated using a RIP and then produced with inkjet printers on special proof papers.
Dotgain or Tonal Value Increase is the difference between the halftone values in the original and the halftone values in print. This difference is caused by printing technology.
In the case of a dot proof, the halftone screening of the final print is simulated in the proof. This screening shows possible moiré or other disturbing effects, that by dot proofing can be seen in advance on the proof.