New edition of ISOCoatedV2 in M1 in sight?

Even almost 9 years after the introduction of the successor colour space PSOCoatedV3, ISOCoatedV2 / FOGRA39 is still the most widespread colour space in Europe. We at Proof GmbH count around 200 jobs from time to time for the German Printing and Media Industries Federation, among others. In the last count, proofs in ISOCoatedV2 accounted for around 68% of all proof jobs at our company. This is a clear sign of the continued widespread use of the colour space.

ISOCoatedV2: From the classic colour space to the beacon of the industry

In addition to the print proofs for offset printing on image printing paper, numerous other applications also come to mind: ISOCoatedV2 is also used for many other, non-standardised or less standardised printing processes and is used as an exchange colour space: From digital printing in exhibition stand construction to packaging printing in flexo and gravure printing: almost all major players in the market rely on the power of ISOCoatedV2.

At the Fogra 2024 colour management symposium in Munich, we heard a lot about how companies and large print service providers from printing processes other than offset printing also rely on ISOCoatedV2 as a colour space reference for their applications. They are virtually following ISOCoatedV2 from the “master standard” and simply orienting themselves to the “largest ship in the colour space sea: ISOCoatedV2”, which is well established among all players in the market such as agencies and designers. Over the last few years, this has turned a successful colour space into a de facto standard.

Updated and future-proof? ISOCoatedV2 is “growing up”

It is therefore not surprising that there has been a call to provide the less popular PSOCoatedV3 with a modernised older brother: An updated FOGRA39/ISOCoatedV2, which, at the age of almost 18 years, can leave the most important legacy issues behind in order to perform its lighthouse function even better as a renewed replacement colour space.

The advantages of a new ISOCoatedV2 in M1:

  • Adaptation to the new measurement condition M1 in force since 2015 and the new standardised light D50 in accordance with ISO 3664:2009
  • Conversion of the old GDMI Gretag-Macbeth measuring base to the new XRGA for better comparability of measured values and higher precision
  • This improves process control thanks to updated H values for full tones for cyan and magenta
  • Retention of the white point of LAB 95/0/-2 and the proof on papers with few optical brighteners (OBA)
  • Classic ISOCoatedV2 proofs would still be valid, but with the new ISOCoatedV2 M1 printing condition, “new” proofs could produce more consistent and better results
ISOCoatedV2 / FOGRA39 Relaunch in M1?

Jürgen Seitz from GMG already presented this outlook at the last DPWG meeting of Fogra in Aschheim and already presented a new FOGRA39 data set in XRGA M1 for discussion. We in the proofing sector could then print a classic FOGRA39 proof on low-lightener proofing paper and measure it with M1 (like all new standards) – with the best results. However, the overriding aim is not so much to update an existing printing condition, but rather to make an exchange colour space fit for the future. The proposal for the profile name of the ICC profile for the ECI: ISOCoated_v2_M1.icc.

What speaks against an updated ISOCoatedV2?

Colour management expert Jan-Peter Homann from Berlin points out: “Users use characterisation data for separation, proofing and controlling the printing process. However, a new characterisation data set would not be suitable for print process control due to the white point with M1. The small but still existing differences to the classic ISOCoatedV2 FOGRA39 data set could unsettle users and make communication between prepress, proof and print more complicated and cause misunderstandings. Jan-Peter Homann therefore fears that an updated ISOCoatedV2 would be ignored by the market.

We passed the first proof certification for the 7C proof under FOGRA55

Proof GmbH Tübingen Fogra Certification FOGRA55 7C Matthias Betz examines 7C test form
Fogra Zertifikat Proof GmbH 2021 Fogra 55 7C CMYKOGV eCG 34807

A few days ago Proof GmbH was the first company to be certified for proofing for the new 7C exchange colour space FOGRA55.

Fogra has developed characterisation data for extended multicolour printing with the printing colours CMYKOGV – i.e. cyan, magenta, yellow, black (contrast), orange, green and violet – FOGRA55 as part of a research project over the past few years. The characterisation data and the ICC profile Ref-ECG-CMYKOGV_FOGRA55_TAC300.icc have been published on the Fogra website in recent weeks. We have now carried out the certification via GMG ColorProof, as GMG software can create and process multicolour profiles and already supports the new Fogra MediaWedge Multicolor V1 7C.

Proof GmbH Tübingen Fogra Certification FOGRA55 7C Matthias Betz examines 7C test form
Matthias Betz and Martin Streckfuß look at a proof of the various Fogra 7C test forms for FOGRA55 certification under standard light. Two Fogra Media Wedges Multicolour V1 7C can be seen on the left of the test form, which was output with the test form via GMG ColorProof.

Since the white point and the CMYK components correspond to FOGRA51 (PSOCoatedV3), we have used GMG ProofMedia premium OBA semiMatte 250 for the certification, as this GMG proof paper was specially developed for the output of PSOCoatedV3 proofs.

We are pleased to have received confirmation of successful certification from Fogra a few days ago.

Proof GmbH: FograCert: First CPC certification for FOGRA55 CMYKOGV

In the next few days we will offer the seven-colour proofs according to FOGRA55 in our Proof Shop.

Proof GmbH FOGRA55 Certificate CMYKOGV ECG 7C-Proof Preview

Fogra60 proofs for metal decor printing available

From now on you can order proofs for metal decor printing on white sheet metal at proof.de: The ICC profile for Fogra60 is Metal-Printing_MPC1_FOGRA60.icc

Shortly after ISO 12647-9:2021, part 9 of the printing standard for the metal decorating process with offset lithography, the characterisation data for Fogra60 and the matching ICC profile have now also been published by the ECI.

The colour profile is suitable for the production of CMYK offset prints on metallic substrates that have been printed with a white coating, i.e. flat printed metal sheets according to MC1 or Metal1. It doesn’t apply to formed or pre-formed metal, such as pre-formed cans.

Printing on metal is different from offset printing on paper or board according to ISO 12647-2, especially due to the colour values of the typical white coated metal substrate. The white of the metal in LAB is 84/-2/-6, which is not nearly as white as most offset papers.

From now on you can order proofs for metal decor printing on shop.proof.de. The Fogra60 profile is directly selectable in all formats from DIN A6 to DIN A0+. The information on the profile and the characterisation data can also be found on the Fogra and ECI websites:

Metal-Printing MPC1 FOGRA60 – Metal print on white lacquered sheet metal New 2022
Profile: Metal-Printing_MPC1_FOGRA60.icc
The characterisation data FOGRA60 apply to offset printing on white lacquered sheet metal (Metal 1) according to ISO 12647-9:2021.
Characterisation data: FOGRA60.txt

Cross-media colour management really works

Video by Peter Jäger Pro2Media: 3 minutes for simple cross-media color management

My Swiss friend Peter Jäger is an advocate of colour management that works reliably across the boundaries of printers and monitors, computers and colour systems, web and print products: In short, cross-media. And since more and more companies and software from the media industry, such as the products of Colorgate from Hanover, support open systems like the freieFarbe CIELAB HLC colour atlas, cross-media colour management is becoming simpler, more transparent and: Simply more consistent. After all, it is good if it works and achieves accurate, transparent and replicable results.

In his new video, he shows how he lives cross-media in the everyday life of brand colours, which tools he uses, and how good the results are.

3 Minuten Zeit für ein simples Farbmanagement? (tranls.: Do you have 3 minutes for some simple colour management?) by Peter Jäger on Vimeo.

If you want to learn more about colour management and user software, you can access Peter Jäger’s entire training series on pro2media.ch and dokumaster.ch: From free Adobe Bridge videos to individual colour management training to PDF output for cross-media or archiving purposes, there is something for everyone.

Current Proof Standards 2024

Offset and Newsprint

ISO Coated v2 (ECI) / ISO Coated v2 300% (ECI)
Profile: ISOcoated_v2_eci.icc
Standard for glossy and matte coated paper
Paper: Types 1 and 2, gloss and matte coated
Tone value increase curves A (CMY) and B (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA39L

ISOUncoated
Profile: ISOUncoated.icc
Standard for uncoated white natural paper
Paper: paper grade 4, uncoated white offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA29L

PSOCoatedV3 / Fogra 51
Profile: PSOcoated_v3.icc
The successor of ISOCoatedV2 for glossy and matte coated paper with moderate optical brighteners
Paper: paper type 1, glossy and matte coated paper with moderate optical brighteners (8-14 DeltaB according to ISO 15397)
Tone value increase curve A (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=95;1,5;-6
Characterisation Data: Fogra51 / Fogra 51 Spectral (M1)

PSOuncoated_v3 / Fogra 52
Profile: PSOuncoated_v3_FOGRA52.icc
The successor of PSOUncoated for uncoated, wood-free natural paper with many optical brighteners
Paper: Paper type 5, wood-free uncoated, with high OBAs (more than 14 DeltaB according to ISO 15397)
Tonal value increase curves C (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=93.5;2.5;-10
Characterisation Data: PresumablyFogra52L (M1)

PSO Uncoated ISO12647 (ECI)
Profile: PSO_Uncoated_ISO12647_eci.icc
The successor of ISOUncoated
Paper: Type 4, uncoated white offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA47L

PSO LWC Improved (ECI)
Profile: PSO_LWC_Improved_eci.icc
Improved LWC paper, glossy coated, successor of ISO Web Coated
Paper: Paper type 3, improved gloss coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA45L

PSO LWC Standard (ECI)
Profile: PSO_LWC_Standard_eci.icc
LWC paper standard, glossy coated
Paper: Paper type 3, standard glossy coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA46L

ISO Web Coated
Profile: ISOwebcoated.icc
LWC paper standard, glossy
Paper: Paper grade 3, standard glossy coated (LWC), dot gain curves B (CMY) and C (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA28L

ISO Uncoated Yellowish
Profile: ISOuncoatedyellowish.icc
Uncoated natural paper slightly yellowish (chamois)
Paper: Type 5, uncoated yellowish offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA30L

SC Paper (ECI)
Profile: SC_paper_eci.icc
Paper: SC (Super Calendered) Paper
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA40L

PSO SC-B Paper v3
Profile:  PSOsc-b_paper_v3_FOGRA54.icc
SC-B Paper, Super calendered Papier, satin-finished
Paper: Commercial offset, SC-B paper (super-calendered, satin), printing condition PC6
Tone value increase curve 2013-B, white measurement base.
Characterisation Data: FOGRA54

PSO MFC Paper (ECI)
Profile: PSO_MFC_paper_eci.icc
Paper: MFC, Machine finished coating
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA41L

PSO SNP Paper (ECI)
Profile: PSO_SNP_paper_eci.icc
Newsprint
Paper: SNP, Standard newsprint, heatset web offset printing
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA42L

WAN-IFRA Newspaper 26
Profiles with different max. ink application: 180%: TIC180_WANIFRA_NP26.icc,  200%: TIC200_WANIFRA_NP26.icc,  220%: TIC220_WANIFRA_NP26.icc
Colour space: Primary and secondary colours according to ISO 12647-3: 2013
Maximum paint application: 180%/ 200%/ 220%

WAN-IFRAnewspaper 26v5
Profile: WAN-IFRAnewspaper26v5.icc
Colour space: Primary and secondary colours according to ISO 12647-3: 2013
Dot gain: 26%
Maximum paint application: 220%
Maximum GCR: Long black with an early black start

ISONewspaper 26v4
Profile: ISONewspaper26v4.icc
Newspaper
Paper: paper type SNP, standard newsprint, heatset web offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: IFRA26

PSO Coated NPscreen ISO12647 (ECI)
Profile: PSO_Coated_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: Paper types 1 and 2, glossy and matt coated paper, non-periodic screen (NPscreen), 20 µm,
Tone value increase curve F (CMYK) from ISO 12647-2:2004
Characterisation Data: FOGRA43L

PSO Coated 300% NPscreen ISO12647 (ECI)
Profile: PSO_Coated_300_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: type 1 and 2, gloss and matte coated
non-periodic screening (NPscreen), 20 μm
Tone value increase curve F (CMYK) as defined in ISO12647-2:2004
Characterisation Data: FOGRA43L

PSO Uncoated NPscreen ISO12647 (ECI)
Profile: PSO_Uncoated_NPscreen_ISO12647_eci.icc
Uncoated white natural paper, non-periodic screening (NPscreen), 30 μm
Paper: type 4, uncoated white offset
Tone value increase curve F (CMYK) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA44L

Improved Newsprint, INP / PSO INP Paper (ECI)
Profile: PSO_INP_Paper_eci.icc
Commercial and specialty offset, INP paper (improved news print), positive plates
Paper: improved newsprint
Tone value increase curves C (CMY) and D (K), white measurement base
Characterisation Data: FOGRA48L

PSO Coated v2 300% Glossy laminate (ECI)
Profile: PSO_Coated_v2_300_Glossy_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent gloss foil lamination (typical OPP gloss foil 12-15 μm), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching gloss finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA50L

PSO Coated v2 300% Matte laminate (ECI)
Profile: PSO_Coated_v2_300_Matte_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent matt film lamination (typical OPP matt film 15 μm with medium opacity ~70%, i.e. brightening ΔL* = 6 on black solid tone after finishing), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching matt-finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA49L

PSO Coated v3 Matte laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Matte_laminate.icc
 The ECI offset profile PSO_Coated_v3_Matte_ laminate.icc is based on the characterisation data set “FOGRA56.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with matte film (typical OPP matte film 15 μm with average opacity ~70%, i. e. brightening by ΔL* = 6 on the black solid after lamination), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA56.txt

PSO Coated v3 Glossy laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Glossy_laminate.icc
The ECI offset profile PSO_Coated_v3_Glossy_ laminate.icc is based on the characterisation data set “FOGRA57.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with glossy film (typical OPP glossy film 12–15 μm), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA57.txt

eciCMYK (Fogra 53) – CMYK exchange colour space
Profile: eciCMYK.icc
FOGRA53 is a CMYK exchange colour space and is used for colour communication in print production.

eciCMYK_v2 (Fogra 59) – CMYK exchange colour space New 2020!
Profile: eciCMYK_v2.icc
eciCMYK_v2 (Fogra 59) is the successor of eciCMYK (Fogra 53).

Heaven42
The absolute white tone opens up the greatest scope of colours for design and printing afforded by any coated paper worldwide. The perfect foundation for extreme contrasts and combination with ultra white natural papers. The absolutely white paper shade of heaven 42 impacts on the printing process as well as on the pre-press stage. With the same colouring and dot gain, the printed image can look significantly colder if separation remains unchanged (e.g. with
ICC-profile “IsoCoated_v2”).

We proof Heaven42 on proof paper with optical brighteners and measure the Proof in M1 Standard. Please note: Our Heaven42 proofs represent a good simulation of the original Heaven42 ICC Profile, but are not – as an ISOcoatedv2 Proof – colouraccurate and legally binding.

Scheufelen offers two ICC-Profiles for download, we proof the colour profile of Heidelberger Druck (“_HD”).
Profile: Heaven42_AM_U280_K98_G80_HD.icc (Heidelberger Druck)
Ink Coverage: ~280 % (U)
Black: GCR , 80 % (G)
Black Generation: 98 % (K)
Proofpaper: EFI Proof Paper 8245 OBA Semimatt
Characterisation Data: Made from Reference Data
Measuring method: M1 with optical brighteners (OBAs)

PaC.Space
Profile: PaC.Space_CMYK_gravure_V1a.icc
PaC.Space is the first common colour standard for packaging gravure printing, which enables to process an interface from the supplied prepress data or printer-specific requirements.
Paper: Coated substrates and films for packaging gravure
Characterisation Data: FOGRA_PaCSpace_MKCheck11

Metal-Printing

Metal-Printing MPC1 FOGRA60 New 2022!
Profile: Metal-Printing_MPC1_FOGRA60.icc
For the printing condition “Metal-Printing on white coated metal 1 (MPC1)” the profile “Metal-Printing_MPC1_FOGRA60.icc” based on the Fogra colour characterisation data set FOGRA60.
Characterisation Data: FOGRA60.txt

Rotogravure Profiles

ECI Rotogravure profiles for the Process Standard Rotogravure (PSR)

PSR LWC Plus V2 M1 v2 (2019)
Profile: PSR_LWC_PLUS_V2_M1_v2.icc
The Successor of PSR LWC Plus V2 (PSR_LWC_PLUS_V2_PT.icc)
Paper: Roll gravure, LWCplus glossy coated
Measuring base: unprinted LWCplus paper
Characterisation Data: PSR_LWC_PLUS_V2_M1

PSR LWC Plus V2 (2009)
Profile: PSR_LWC_PLUS_V2_PT.icc
The successor of HWC
Paper: Improved LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_PLUS_V2

PSR LWC Standard V2 M1 (2019)
Profile: PSR_LWC_STD_V2_M1.icc
The successor of PSR LWC Standard V2
Paper: Rotogravure, LWC
Measuring base: unprinted LWC paper (self backing)
Charakterisierungsdaten: SR_LWC_STD_V2_M1

PSR LWC Standard V2 (2009)
Profile: PSR_LWC_STD_V2_PT.icc
Paper: LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_STD_V2

PSR SC Plus V2 M1 (2019)
Profile: PSR_SC_PLUS_V2_M1.icc
The successor of PSR SC Plus V2
Paper: Rotogravure, SC Plus
Measuring base: Unprinted SC Plus paper
Characterisation Data: PSR_SC_Plus_V2_M1

PSR SC Plus V2 (2009)
Profile: PSR_SC_PLUS_V2_PT.icc
Paper: whiter super calandered paper
Characterisation Data: ECI_PSR_SC_Plus_V2

PSR SC Standard V2 M1 (2019)
Profile: PSR_SC_STD_V2_M1.icc
The successor of PSR SC Standard V2
Paper: Roll gravure, SC paper
Measurement document: Unprinted SC paper
Characterisation Data: PSR_SC_STD_V2_M1

PSR SC Standard V2 (2009)
Profile: PSR_SC_STD_V2_PT.icc
Paper: super calandered paper
Characterisation Data: ECI_PSR_SC_STD_V2

PSR MF V2 M1 (2019)
Profile: PSR_MF_V2_M1.icc
Paper: Rotogravure, paper type MF or INP, 55 g/m2
Measuring base: unprinted MF or INP paper
Characterisation Data: PSR_MF_V2_M1

PSR News Plus
Profile: PSRgravureMF.icc
PSRgravureMF is now reffered to as News Plus
Paper: Paper News Plus
Characterisation Data: PSRgravureMF_ECI2002

US / International Proof Profiles

GRACoL2006_Coated1v2
Profile: GRACoL2006_Coated1v2.icc
GRACol interpretation of ISO 12647-2.
Paper: Type 1 and 2, glossy and matt coated paper
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: GRACoL2006_Coated1, a derivation from Fogra 39

SWOP2006_Coated3v2
Profile: SWOP2006_Coated3v2
SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper.
Paper: Thin, coated paper
Tonwertzunahmekurven: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated3, a derivative of Adobe USWebCoated v2

SWOP2006_Coated5v2
Profile: SWOP2006_Coated5v2
Other SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper
Paper: Thin, coated paper with a slightly different white tone to SWOP2006_Coated3V2
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated5, a derivative of Adobe USWebCoated v2

Japan Color 2011 Coated
Profile: JapanColor2011Coated.icc
The new standard of Japan Printing Machinery Association (JPMA).
Characterisation Data: JapanColor

Japan Color 2001 Coated
Profile: JapanColor2001Coated.icc
Printing process definition: ISO 12647-2:1996, sheet-fed offset printing, positive plates
Paper: Type 1, (coated, 105 gsm), screen frequency 69/cm.

SWOP 2013 C3
Profile: SWOP2013_CRPC5.icc or SWOP2013C3-CPRC5.icc
The profile is measured in M1 mode in consideration of optical brighteners and is printed on proofing papers with optical brighteners.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: Grade #3 paper
Characterisation Data: CGATS21-2-CRPC5

GRACoL 2013 Uncoated
Profile: GRACoL2013UNC_CRPC3.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC3

GRACoL 2013
Profile: GRACoL2013_CRPC6.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 320%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19,1%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC6

Publication of Fogra 56/57 for Glossy and Matte Film Lamination of PSOCoatedV3 Prints

Offset film lamination with matt or glossy OPP film of a print according to Fogra51 PSO Coated V3

A few days ago Fogra published the characterisation data for the new printing standards Fogra56 and Fogra57 while ECI provided the respective ICC profiles for download on the eci.org website.

FOGRA56 and FOGRA57 are the separation and printing standards for matte and glossy film lamination of “PSO Coated v3” / Fogra51 prints.

Offset film lamination with matt or glossy OPP film of a print according to Fogra51 PSO Coated V3
Offset film lamination using matt OPP film on a print according to Fogra51 PSO Coated V3 | shutterstock | zefart

At Proof.de, with regard to the two predecessor standards Fogra49 and Fogra50 for glossy and matte film lamination of ISOCoatedV2 / Fogra39 prints, the majority of inquiries were for the standard for matte film lamination only, as this is where the greater and more difficult effects occur with regard to colour changes due to the lamination process. Particularly in the area of colour-critical prints, such as catalogues for the automotive industry, extensive tests are sometimes carried out with different film laminations in order to be able to recognise and compensate for differences between a normal matte film lamination and a scratch-resistant matte OPP lamination, for example. We also expect a higher demand for consulting and proofing for Fogra56 and Fogra57 for matte film lamination.

The European Colour Initiative ECI states on its website that the differences between different glossy films are rather small, while matte films are available in very different opacities. According to the ECI, the “average” matte film used as a reference in FOGRA56 leads to a lightening of ∆L* = 6 in the black solid tone and fits well with typical production. The lightening is lower with more transparent foils and higher with matte foils. In order to be able to assess one’s own films, the ECI recommends measuring the black solid tone before and after finishing on the same field on the same sheet.

You can download the new finishing profiles here from the ECI or from Proof.de. You can find the matching characterisation data here on the Fogra pages.

Fogra56 / PSO Coated V3 Matte Laminate

The ECI offset profile PSO_Coated_v3_Matte_laminate.icc is based on the characterisation file “FOGRA56.txt” and applies to the following printing conditions according to the international standard ISO12647-2:2013:

  • Commercial offset, premium coated paper, dot gain curve 2013-A, followed by matte film lamination (typical OPP matte film 15 μm with medium opacity ~70%, i.e. lightening ΔL* = 6 on black solid after finishing), white measuring base.
  • The profile is consistent with the PSOcoated_v3.icc profile and shows the matching glossy finished result.
  • The profile was calculated using Heidelberg ColorToolbox 2019 with the following settings: Black length 9 (insertion point 10%), Black width 10, max. area coverage 300%, max. black 96%.

Fogra57 / PSO Coated V3 Glossy Laminate

The ECI offset profile PSO_Coated_v3_Glossy_laminate.icc is based on the characterisation file “FOGRA57.txt” and applies to the following printing conditions according to the international standard ISO12647-2:2013:

  • Commercial offset, premium coated paper, dot gain curve 2013-A, followed by glossy film lamination (typical OPP glossy film 12-15 μm), white measuring pad.
  • The profile is consistent with the PSOcoated_v3.icc profile and shows the matching gloss finished result.
  • The profile calculation was done with Heidelberg ColorToolbox 2019 with the following settings: Black length 9 (insertion point 10%) , Black width 10, max. area coverage 300%, max. black 96%.

 

Proofs according to Fogra56 and Fogra57 for matt film laminated or glossy film laminated prints according to Fogra51 can now be ordered directly in the Proof Shop at shop.proof.de.

eciCMYK_v2 / Fogra 59 Available for Proof

The new CMYK exchange colour space eciCMYK v2 (FOGRA59) is the successor of eciCMYK (FOGRA53) from 2017. The new “V2” profile is based on the revised characterisation file FOGRA59. For the same colour space, the new profile offers a significantly modified and improved grey axis, which now contains the familiar cyan, magenta and yellow components from classic printing processes. Thus eciCMYK v2 offers a further advantage besides a large colour space and proofability. Practical tests with various digital printing systems have shown that, in addition to the conversion from “ISO Coated v2” to “PSO Coated v3” data, the assignment of the new CMYK exchange colour space profile also enables improved output on digital printing systems with a larger colour space: the printed image appears richer in contrast, with brighter colours. The icc-profile “eciCMYK_v2.icc” can be downloaded from the ECI in the download section.

Proofs in the eciCMYK_v2 colour space can now be ordered in the shop at Proof.de.

DeviceLink PDF Colour Conversions for Ads

DeviceLink PDF Colour Conversion

We have recently started offering DeviceLink colour conversions via DeviceLinks made by ColorLogic from numerous RGB and CMYK standards into other CMYK standards from offset and gravure printing.

DeviceLink PDF Colour Conversion

Optimised colour conversion between different printing standards

The colour conversion profiles preserve the separation structure, limit the total colour application for the selected printing standard and maintain the purity of the primary and secondary colours. They ensure smooth transitions in gradients and enable correct conversion of PDF and PDF/X data. Separation-preserving conversion ensures that pure grey tones are not built up into four colours and that duplex tones (black+primary colour) and triplex tones (black+secondary colour) remain pure, while still being colour-metrically transformed in the best possible way. In addition, the colour impression of the source colour space is optimally preserved in the target colour space by taking into account both paper colouration and dot gain.

Limitation of Total Allocation of Colour (TAC)

For current printing standards of ISO, Fogra, ECI, Ifra, Gravure (PSR), Gracol, Swop, SNAP, these profiles ensure a targeted limitation of the maximum ink application without completely new separation. This reliably prevents problems with set-off and improves the drying behaviour. These profiles are suitable if the data is generally already in the desired colour space, but individual images or objects have too much ink application.

You can order the Devicelink PDF colour conversions for advertisements here

Read more

Gamut map: The colour tool for cross-media design

Due to our involvement with freeColour e.V., at the last meeting in Switzerland the desire for a cross-media tool for designers was expressed with which one can create intersections of colourspaces from the freieFarbe CIELAB HLC Colour Atlas XL.

With Gamutmap, Proof GmbH has now created such a tool, which is available to all designers free of charge. With Gamutmap nearly 100 individual colour spaces can be indicated from 34.250 colours of the entire CIELAB colour space, or intersections from many combined colour spaces can be indicated.

An example: As a designer you are looking for colours for a new corporate design, which are available in sRGB for the internet, in ISOCoatedV2 for printing image brochures and in PSOUncoatedV3 for printing stationery. For video productions, the Rec.709 colour space is also to be taken into account.

In Gamutmap you can now easily select the colour spaces sRGB, ISOCoatedV2, PSOUncoatedV3 and Rec.709 and then click on “show”. After a few seconds you will only see the colours that are available in all selected colour spaces. If you move the mouse over a colour field, you will directly see the absolute colorimetric values of the colour in all selected colour spaces and you can copy them directly to your clipboard.

Since the hex value of the sRGB colour space was also still interesting, this colour space was additionally marked for display. The HLC and Lab values of all colours can be read directly in the colour table. All other colour values can be copied to the clipboard simply by moving the mouse to the desired colour field. For the colour field shown in the example above, it looks like this:

HLC: H005 | L055 | C035
Lab: 55 | 34,867 | 3,05
sRGB: 188 | 106 | 128
sRGB (HEX): #BC6A80
Rec. ITU-R BT.709-5: 188 | 87 | 115
ISO Coated V2 (ECI): 14 | 64 | 27 | 11
PSO Uncoated V3 (Fogra52): 10 | 70 | 34 | 8

Gamutmap is “Work in Progress”

We are sure that gamutmap will be a great help to many designers in creating cross-media corporate designs and are very happy that we were able to start and push the project with the members of freieFarbe e.V. For us, gamutmap is “work in progress”, which means: In the coming weeks we will add further functionalities and features to gamutmap. For example, a German version is in progress, and the download of spectral D50 CxF data of the selected colours should be possible in the future directly while hovering over the respective colour field, if the field is in the gamut of the freefarbe CIELAB HLC Colour Atlas XL. Further function extensions are already on our wish list… 🙂

We welcome suggestions, criticism, wishes and any support for the expansion and addition of Gamutmap.

Look back: Fogra Color Management Symposium 2020

The 7th Fogra Color Management Symposium was held in Munich from February 12 to 13, 2020, to which I was invited as a speaker for the area of proofing in Session 6. I reported on our tests in proofing for the Fogra58-Beta-Textile-RGB Standard for textile digital printing.

The Fogra Color Management Symposium is one of the events in the field of colour management and brings together scientists and users from all over the world for a two-day exchange of ideas in Munich. A total of 21 speakers and 7 moderators reported on the topics multicolour printing, proofing, print procurement, customer expectations, colour management for 3D printing and colour management for textile digital printing, the topic to which I was also assigned.

I arrived one day earlier, because there was a “Speakers Dinner” the evening before, and I also had to discuss with Jan-Peter Homann and Joe Tschudi the structure and selection of our patterns in terms of textile RGB. On site in Munich we set up the standard light booth LED Color Viewing Light XL HYBRID 2.0 provided by Just-Normlicht and coordinated once again which samples we would show best during the Color Management Symposium.

Joe Tschudi and Jan-Peter Homann and I discuss which samples we want to show at the Fogra Colour Management Symposium 2020 for the proof comparison of Fogra58beta-TextileRGB
Joe Tschudi and Jan-Peter Homann and I discuss which samples we want to show at the Fogra Colour Management Symposium 2020 for the proof comparison of Fogra58beta-TextileRGB
A sample that we showed at the Fogra Colour Management Symposium 2020 for the proof comparison of Fogra58beta-TextileRGB Below the proof we made, above Joe Tschudi's fabric produced by sublimation printing, both illuminated in Fogra58-beta-TextileRGB under D50 standard light.
A sample that we showed at the Fogra Colour Management Symposium 2020 for the proof comparison of Fogra58beta-TextileRGB Below the proof we made, above Joe Tschudi’s fabric produced by sublimation printing, both illuminated in Fogra58-beta-TextileRGB under D50 standard light.

During the Speakers Dinner I had the opportunity to talk to Jürgen Seitz from GMG, the moderator of my session, and Jeffrey Stauffer from oneflexo GmbH, in order to organize our session on day 2 well. Gerardo Cerros from CMA Imaging Belgium SPRL, the third speaker of our session arrived directly for his presentation. Furthermore we could test our presentations on the Fogra computers and already got to know the lecture room and familiarize ourselves with the stage. On the stage sat the three speakers per session plus the moderator of the session. All presentations, moderations, questions etc. were translated live from English to German and German to English. I held my presentation in German, but I had kept the slides in “Denglish” so that they were understandable for Germans as well as for everyone else.

The speakers and presenters visit the stage and stage technology. The grey box at the back left is the interpreter's booth, which housed the two simultaneous interpreters.
The speakers and presenters visit the stage and stage technology. The grey box at the back left is the interpreter’s booth, which housed the two simultaneous interpreters.

The complete programme of the symposium can be found on the Fogra website. The topics of the seven sessions were:

1. Managing customer expectations – Managing colours throughout the  food chain
2. Creating colour credibility in CMYK and extended gamut printing
3. Real-world multicolour packaging implementations (ECG)
4. Industrial Printing application:  High Speed Inkjet beyond commercial and packaging printing
KEYNOTE: Colour workflows in the motion picture  world –  How HDR & Wide Gamut  change the game (Harald Brendl, ARRI)
5. Colour communication for fashion textile applications
6. Colour Proofing for Packacking & textile applications
7. Colour in 3D (3D Softproof & Appearance measurement)

You can download the presentation of my lecture “Proofing in textile printing: Contract proofs for RGB-(FOGRA58) based textile workflows” here

After the session, there were lively discussions at our Fogra58 stand and the fabric/proof comparisons exhibited were discussed. Special attention was paid to a pattern with different shades of grey by Joe Tschudi. The proof was quite neutral grey for the human eye, but the fabric had a clearly visible green cast. In terms of measurement, however, the two patterns were only DeltaE00 0.3 apart for an i1Pro2, and a ball-head meter also showed a similar distance. A nice example to demonstrate the difficulty between textile printing and proof, between measuring devices and human perception.

Fogra has issued a good conclusion of the proofing session here.

Many thanks to Andreas Kraushaar and the entire Fogra team for the excellent organisation and support during the entire Colour Management Symposium. An outstanding event that shows current developments in colour management and broadens the view to new markets and segments.

Good times: The general meeting 2019 of freieFarbe e.V. in Switzerland

After the association freieFarbe e.V. had met last year in Tübingen for their annual general meeting, this year we met in a rustic hut in the Appenzeller Land, which Peter Jäger from pre2media and Eric A. Soder from pixsource.com had excellently chosen, just like the sunny weather that should accompany us from Friday to Sunday.

freieFarbe e.V. Mitgliederversammlung 2019: Unsere Unterkunft in den schweizer Bergen
freieFarbe e.V. general meeting 2019: Our accommodation in the Swiss mountains

The chairman of the association, Holger Everding from DTP Studio Oldenburg and Jan-Peter Homann from Homann Colormanagement in Berlin arrived in Tübingen on Thursday, and after a first long night full of discussions and a meeting in the Proof.de office on Friday morning around noon, the three of us continued our journey to Switzerland. After a joint dinner with Peter Jäger and Eric A. Soder (from Tübingen, we had taken some Swabian potato salad and my handmade Maultaschen with us the evening before), an evening full of planning and a strategy workshop for the tasks and goals of the next year began. Without question, this evening was also spent discussing, developing, laughing and working creatively until late into the night between Flensburger Pils, Swiss mountain beer and wine in attractive red and light yellow shades.

Ausschnitt der Ergebnisse des freieFarbe Kreativworkshops am Freitag Abend mit Gewichtungen (blaue Aufkleber) und Zuständigkeiten (Namenskürzel)
Part of the results of the freieFarbe creative workshop on Friday evening with importance (blue stickers) and responsibilities (name abbreviation)

After breakfast, we continued on Saturday to swissQprint, where we had the opportunity to learn more about the status quo of large format digital printing from association member Guy Flüeli, as well as visit the production facilities and conduct print tests on the Karibu and other SwissQPrint presses.

Jahreshauptversammlung freieFarbe e.V. 2019 in der Schweiz
from left to right: Matteo Baschera, Jan-Peter Homann, Matthias Betz, Holger Everding, Eric A. Soder, Martin Spaar, Peter Jäger, Michael Jakobi. It is missing: Kai-Uwe Behrmann, Jan Seguda, Guy Flüeli (photo)

Read more

Convert PANTONE colours optimally into CMYK. Practical aspects to the new old discussion.

A very frequent topic for us in the area of proofing is the optimal conversion of PANTONE colours in CMYK for classic, inexpensive four-colour printing. In the last few days, there has been a lively discussion on this topic in the Adobe Forum and in the colour management forum of hilfdirselbst.ch, which I would like to summarise briefly, as our customers often struggle with the same issues.

PANTONE and the PANTONE CMYK values from Bridge: The Problem

The central question is to which standard or colour profile a CMYK value of a PANTONE colour in Bridge actually refers. Specifically, a user asked for the conversion of PANTONE 116 C, a colour tone that is specified in the PANTONE Bridge fan in CMYK 0/14/100/0 (here you can see the original value in PANTONE). But if you now convert the underlying PANTONE Lab color value in InDesign or Photoshop into different CMYK profiles, you will get different, significantly different color values. “What does the PANTONE Bridge CMYK colour value refer to” was the original question of the discussion.

The starting point of the PANTONE Bridge fan

In the PANTONE Bridge Fan, “equivalents” of the PANTONE spot colours on a coated and an uncoated paper grade, separated with 4 Pantone scale colours, are visualised and the CMYK values are specified.

But one thing is clear: without precise information on the substrate, print density, inks used, etc., the information provided there has only limited validity. If, for example, one converts the LAB colour value of PANTONE 116 C into the SWOP Web coated commonly used in the USA, then one reaches a value of 20 in magenta instead of 14 as indicated in the PANTONE Bridge Fan.

Comparison of PANTONE LAB values with PANTONE Bridge CMYK values in PSOUncoatedV3 and PSOCoatedV3

If you compare the original PANTONE LAB values and the PANTONE Bridge CMYK values in European standards such as ISOCoatedV2 or PSOCoatedV3 for coated or PSOUncoated or PSOUncoatedV3 for uncoated paper, there are sometimes serious colour deviations. The PANTONE Cool Gray 2 is much too light in CMYK conversion, the PANTONE Cool Gray 11 is always much too dark. For the PANTONE 3278 C, the Bridge CMYK value for PSOCoatedV3 fits quite well, but the same comparison for Uncoated is noticeably worse. What is the reason for this?

Comparison of PANTONE C Solid Coated LAB values with PANTONE Bridge CMYK values in PSOCoatedV3 colour space
Comparison of PANTONE C Solid Coated LAB values with PANTONE Bridge CMYK values in PSOCoatedV3 colour space
Comparison of PANTONE U Solid Uncoated LAB values with PANTONE Bridge CMYK values in PSOUncoatedV3 colour space
Comparison of PANTONE U Solid Uncoated LAB values with PANTONE Bridge CMYK values in PSOUncoatedV3 colour space

The question was therefore specified once again:

  • How can PANTONE specify “official” CMYK values for a particular colour if it is not clear what paper white, print density, ink coverage, etc. the values refer to?
  • How does PANTONE arrive at the specified colour values?
  • Which ICC profiles are possibly the basis?
  • Are there errors if programs such as Photoshop or Affinity Publisher do not show the same values when converting a Pantone color as those specified by Pantone?

Thesis 1: Why should a spot colour manufacturer deliver perfect CMYK replacement values for his products? That would be detrimental to business.

One thing is clear: there are no system errors. PANTONE knows what they do. But it is surprising that the bridge values have apparently been fluctuating by several percentage points for many years. Perhaps one reason for this is that different base pigments have been used over the years and the values have therefore been adjusted. But it was not possible in any way to find out how the values are created, what profiles or logic could be behind the values. Some discussion participants thought of a deliberate system error: “Cui bono? Why should a spot colour manufacturer deliver perfect CMYK replacement values for his products? That would be detrimental to business.”

This is an exciting approach which, at second glance at the latest, does not lack a certain logic. If the head of the company has only seen bad CMYK conversions of his PANTONE spot colour for long enough, he will sigh and agree to any surcharge for a five-colour print, only to finally find his corporate colour correctly reproduced again.

But another thesis is also very plausible:

Thesis 2: The sales department defines the CMYK values

Let’s assume that a PANTONE “Green1” corresponds colorimetrically to a CMYK of 30/0/100/0. If two more saturated green tones (“Green2” and “Green3”) are displayed in the fan, which theoretically should be displayed with CMYK 35/0/110/0 and CMYK 40/0/120/0, what then?

To set all three green tones to CMYK 30/0/100/0, i.e. the next CMYK value that can be achieved absolutely colorimetrically? That would actually be the most obvious way, especially since it is very unlikely in practice that two adjacent PANTONE colours would ever be used in CMYK conversions. Because a company has either green1 or green2 as its corporate colour, but hardly both at the same time.

On the other hand, buyers of PANTONE Bridge fans would probably be very surprised if different PANTONE colours in the fan had the same CMYK value.

Therefore, a psychological-sales-department correction is obvious: In order to avoid identical CMYK values, we set the most saturated green tone to the not matching CMYK 30/0/100/0, and then the less saturated colors to 25/0/0/90/0 and 20/0/0/80/0, i.e. also not matching CMYK values. Now nothing fits anymore, but at least all colors have different CMYK values.

Practice shows: An adjusted conversion via ICC profiles often provides a better CMYK color value for the conversion of PANTONE colors like the CMYK value from the PANTONE Bridge.

We have converted the PANTONE colours used in the above mentioned graphics also via ICC profiles partly absolutely colorimetrically and relatively colorimetrically with depth compensation (marked with an “r” behind the CMYK colour value) into the two output colour spaces PSOCoatedV3 and PSOUncoatedV3 and have mapped the visually best match in each case.

In most cases, this conversion adapted to the output color space delivers the significantly better results. See for yourself:

We support you in determining the optimal CMYK conversions for your PANTONE house colours

If you need the best possible conversion of one or more PANTONE colours to CMYK, we will be happy to support you with our know-how and our measuring and proofing technology. We determine and compare different imaging variants of a PANTONE colour in CMYK and show you the best determined conversions in CMYK with metrological evaluations in Delta-E00.

Which proof profile for corrugated plastic posters and election posters?

As is well known, elections are always around the corner, and the trend towards ever larger and more numerous election posters is unbroken. In the past, only Mother Nature made the landscapes colourful in spring, but today every local, state, federal and European election does so easily. Every candidate, every large or small party now has the technical and financial means to transform entire streets into a colourful sea of messages and faces. Once the photographer has captured the election candidates well in the studio, the pictures go off for retouching and then for layout.

Until a few years ago, election posters were usually produced in classic offset printing and then glued onto hardboard with paste, drilled or screwed onto roof batten stands and then attached to street lamps with wire. And if the election took place in the summer, the posters were printed in a double edition, so that in an emergency the faded prints could be pasted over and refreshed with new ones after one month for the final spurt.

Today, however, the corrugated plastic poster is becoming more and more popular, as it is supplied pre-drilled and ready to use, retains its colour for several months and can be attached to street lamps with cable ties. But how should print data be created and how should data be prepared and proofed?

All manufacturers of corrugated plastic posters and election posters known to us want proofs in ISOCoatedV2 or ISOCoatedV2 300%

Corrugated plastic posters are produced on different systems. Sometimes four colours are used, sometimes six, sometimes more colours. Therefore, there are no binding proof standards for most digital print products produced in this way.

Instead, it works the other way around: Since most of these digital printing systems have at least the colour gamut of offset printing on picture printing paper, these printing systems are based on the established colour gamut of ISOCoatedV2.

For example, Printpartner-XXL writes: “For colour-critical motifs, we therefore recommend a prepress proof on the original material or the delivery of a colour-binding proof (with media wedge and date). Data that is delivered without colour information is provided and produced with the standard profile “ISO Coated v2”. In such a case, a colour complaint cannot be accepted.
Eine Reklamation der Farbe kann in so einem Fall nicht anerkannt werden.

From our point of view, most printing specialists demand ISOCoatedV2, some like flyeralarm and wir-machen-druck ISOCoatedV2 300%. Some want black exclusively as pure black, some exclusively as CMYK 50/50/50/100 colour black … and some do not give any information about the required colour profiles … but if you don’t specify anything, you probably won’t stick to anything … so if you want to be on the safe side, you should choose a supplier with a functioning colour management system and specifications for colour profiles.

eciCMYK profile available for proofing

Today we have activated the exchange colour space eciCMYK, Fogra53 for proofing and integrated it into the online shop of proofing.de for ordering.

eciCMYK is the colour space for CMYK print production and complements the other Fogra colour spaces, but in contrast to these it does not represent a specific printing process, but is rather “neutral CMYK”. Due to the large gamut of eciCMYK all classical printing processes can be represented, it can be proofed on modern proofing systems without any problems and corresponds in its characteristics to typical CMYK printing colour spaces.

Proofs in eciCMYK / Fogra 53 can now be easily ordered in our Proof Shop, you can select the profile directly when ordering.

Further information on Fogra 53 can also be found on the homepage of the European Color Initiative ECI. Andreas Kraushaar from Fogra also presented the colour space in the Fogra aktuell issue 201, which you can download for free.

free colour: CIELAB HLC Colour Atlas XL published and can be ordered at proof.de

HLC Colour Atlas XL - freieFarbe proof.de - title white 2018 v1

After almost a year of work the time has finally come. The CIELAB HLC Colour Atlas XL saw the light of day. The new HLC Colour Atlas XL is the basis for all stages of professional colour communication – from design to the finished product. The standard version contains 2040, the new XL version even 13283 mathematically-systematically graded CIELAB colour tones on 74 pages.

You can order the CIELAB HLC colour atlas here in our shop

The free file package contains the layer PDF version with several gamuts for the analysis and research of colors, as well as the spectral data (380-730 nm) of all color tones for recipe software, an Excel table with the measured values and spectra as well as color value tables for all common CMYK color spaces and sRGB. All files are available for free download under a CC license.

Only the HLC Color Atlas XL printed by Proof GmbH is subject to a fee, as production is very labour-intensive and cost-intensive. We at freieFarbe e.V. and Proof GmbH see the “CIELAB HLC Colour Atlas XL” as a genuine, transparent and high-precision alternative to the hundreds of proprietary colour systems, which often make fast and precise cross-media communication in design and production very difficult.

DIN SPEC 16699 “Open colour communication” published

DIN SPEC 16699 - Open colour communication - Final meeting - Berlin

A few days ago, our DIN SPEC 16699 “Open Colour Communication” was published and is now available for free download from DIN’s Beuth-Verlag.

Matthias Betz from Proof GmbH, Holger Everding from DTP Studio Oldenburg, Jan-Peter Homann from Homann Colormanagement in Berlin and Eric. A Soder from Pixsource in Switzerland, all members of the association freieFarbe e.V., have shown in the bilingual DIN specification a way to create high-precision color samples on the basis of open source, license-free standards and have shown ways for cross-media color communication.

The 44-page PDF is bilingual in German and English and can be ordered directly from Beuth Verlag, which distributes the DIN standards in Germany, and downloaded free of charge after a short registration.

DIN SPEC 16699 Open Colour Communication

How CMYK and RGB profiles are handled in proofing

When we receive a file from you, the first thing we check is whether there are colours other than CMYK in the file. If the file is built exclusively in CMYK, it will be sent directly for proofing.

Handling wrong profiles with CMYK data / “Profile Mismatch
If we have only received CMYK data from you, we will ignore all input and output profiles and only use the CMYK values that we bring to the ordered output colour space.

Example 1: Data in ISOCoated, proof in ISOCoatedV2 ordered, thus wrong or no CMYK profile embedded.

You send a file with the profile ISOCoated and a colour area in CMYK 100/70/0/0 and order a proof according to ISOCoatedV2.
We ignore the ISOCoated profile and proof the pure colour value 100/70/0/0 according to ISOCoatedV2.

Why do we do this?
In our proofs, we try to reproduce the “lived reality” of the print as well as possible. In many conversations with printers we have seen that in almost 100% of the cases they do not convert profiles from CMYK to CMYK, but instead put a colour value of 100/70/0/0 on the plate without taking CMYK profiles into account, insert paper and print in conformity with the standards. So we also map this way, although it would actually be “more correct” to perform a colour space transfer from ISOCoated 100/70/0/0 to ISOCoatedV2. However, this results in a different colour value, for example 100/63/1/6 for relatively colorimetric conversion with depth compensation or 100/63/3/15 perceptively with depth compensation!

In practice:

One of our customers did not proof 30 slightly different, dark blue colour areas in ISOCoatedV2 on our premises, but on the premises of a colleague, under each of which the CMYK value was in black lettering, in order to sample the colour of a powder-coated surface. The customer defined a very well fitting CMYK colour value on the basis of the proofed colour areas, inserted it into his brochures and started the print jobs. Result: The dark blue was a distinctly different blue than on the reference proof, customer and agency were very dissatisfied and went on troubleshooting. Now the case came to us.
We received a file for proofing according to ISOCoatedV2 and compared it with our colleague’s proof. The colours with the same black CMYK values printed underneath were clearly different, but both proofs were provided with media wedges and measured correctly. After some troubleshooting, we came up with the idea of requesting the original proof from our colleague, which also existed. In this one there was a Fogra27Coated profile, thus an implementation of the old ISOCoated. A proof according to ISOCoatedV2 had been ordered at that time. Had it happened? The colleague had taken the input profiles into account, which resulted in a significant change in the CMYK values of the colour patches, as mentioned above, due to a colour space transfer from CMYK to CMYK. The black printed CMYK values under the colour patches had of course not changed. The patterned CMYK value therefore did not correspond to the proofed value at all. Our customer fell from all clouds: “How, our CMYK values were not proofed”. This would not have happened with us, because we would ignore the embedded profile with CMYK data. In this case this would also have been our customer’s expectations.
After almost two hours, we had determined the “error” (or perhaps rather: the “difference”), created a proof for our customer that was “in line with expectations”, which he could use to determine the appropriate CMYK value in ISOCoatedV2, and solved the problem.

Read more

freieFarbe e.V. – Review of the General Meeting and Preview

On the last weekend in September the general meeting of the association freieFarbe e.V. took place in Tübingen. From Friday to Sunday, the members worked, discussed, conceived and, as you can see on the picture, ” punted” in and with new products and ideas in the best weather on the Neckar river.

freieFarbe e.V. General Meeting 2018: Punting together on the Neckar river after the general meeting at Proof GmbH in Tübingen. Photo: Peter Jäger

After a meeting with the colour management specialists from GMG on Friday, who support the association with software and proofing media, work continued on the new CIELAB HLC Colour Atlas in the afternoon, to wrap up the day with tarte flambée and wine at Matthias Betz’ house.

On Saturday, the general meeting followed at Lorettoplatz at Proof GmbH, where the past year was discussed and the coming year was touched upon. With the CIELAB HLC Colour Atlas and the DIN SPEC 16699 Open Colour Communication much was reached and accomplished, but numerous ideas need to be evaluated, weighted, financed and worked on.

Present were: From Germany Matthias Betz from Proof GmbH as this year’s host, Jan-Peter Homann from Homann Colormanagement in Berlin, Holger Everding from DTP Studio in Oldenburg and the Swiss Peter Jäger from pre2media in Hombrechtikon, Eric A. Soder from pixsource in Uster and Matteo Baschera from galledia in Zurich.

Read more

First online printers switch to PSOCoatedV3 and PSOUncoatedV3

With DieDruckerei.de, the first well-known online printer has switched to PSOCoatedV3 and PSOUncoatedV3. A sign that almost exactly three years after the new Fogra51/52 standards appeared, they are increasingly being used in production and as a requirement for printers to produce data.

DieDruckerei.de hat auf die neuen Normen PSOCoatedV3 und PSOUncoatedV3 umgestellt
Screenshot of the diedruckerei.de website: dieDruckerei.de has switched to the new PSOCoatedV3 and PSOUncoatedV3 standards

The fact that also here the conversion does not run completely smoothly, shows up in the data requirements, which recognize beside the new PSOCoatedV3 also a 300% variant of the profile – a legacy from the ISOCoatedV2 300% times, PSOCoatedV3 is present only in a 300% version, a profile PSOCoatedV3 300% does not exist therefore.

Nevertheless, the conversion shows that the new Fogra 51 and Fogra 52 profiles are also increasingly being used in online printing. A replacement of ISOCoatedV2 is still a long way off, the profile is simply too successfully anchored in the market and also well established as a defacto master standard for numerous printing processes in digital printing, trade fair construction, flexo printing and much more, so that this will take several more years. But with every major player in the printing market that advocates the conversion, the spread will increase and the new profiles will also be used in prepress.

CIELAB HLC Colour Atlas available in the Proof.de Shop

HLC Colour Atlas freieFarbe proof.de 2

It has taken almost a year, but we are all the more pleased now: The “CIELAB HLC Colour Atlas” is completed and can be ordered in our shop. The HLC Colour Atlas is a open source, high-precision colour system based on open standards.

The CIELAB HLC Colour Atlas offers professional users of colour three decisive advantages:

  • The CIELAB HLC colour atlas is based on open, non-proprietary standards that are free of copyrights and trademarks.
  • The colour atlas with all components is available to all users free of charge online and can be downloaded, used and passed on directly.
    It is released under an OpenSource Creative Commons license.
  • The printed reference of the CIELAB HLC colour atlas impresses with outstanding precision and, unlike some commercial products, the colour accuracy is extremely high with a DeltaE00 median of 0.3 and an average DeltaE00 of 0.5. In most cases, the deviation from the ideal colour reference and colour differences between two colour atlases can be measured, but not perceived by the human eye. Each atlas is produced on our best Fogra-certified high-end proofing printer on Fogra-certified paper. Each copy is delivered with an individual, colourimetric test report in accordance with ISO 12647-7:2016 to document the colour accuracy of each individual colour atlas.

Read more

WordPress Cookie Plugin by Real Cookie Banner