PANTONE has combined and supplemented its two metallics fans “PANTONE Metallics Coated” and “PANTONE Premium Metallics Coated” into one fan. On the one hand, a new metallic base colour, “PANTONE Rose Gold 10412 C” has been added to the existing “Premium” base silver “PANTONE Silver 10077 C”, adding 54 new metallic shades. On the other hand, the two previous fans are now separated according to Metallics base colours, the fan is divided into two areas: Into one Metallics area for “packaging” and into one for the classic “printed graphics”.
The 354 high-gloss, durable metallic packaging colours are based on the two premium metallic base colours PANTONE Silver 10077 C and PANTONE Rose Gold 10412 C and form the front part of the fan. Fan pages with the 54 new colours are now marked with a black square on the top pagination to make the new colours easier to recognise, a good idea in my opinion. The 301 metallic spot colours for advertising graphics are based on the seven classic, “old” PANTONE gold and silver shades with PANTONE 871 C to PANTONE 877 C and form the back part of the fan.
Metallic inks for non-packaging projects Marketing and sales materials, publishing and literature. The colours are based on the seven classic PANTONE Gold and Silver Shades 871 to 877 C.
Metallic packaging inks for packaging printing. These former “Premium Metallics” colours are created with the basic colours Pantone Silver 10077 and Pantone Rose Gold 10412. These special inks are made with pigments that are easier to process with water-based and UV varnishes. The varnish seals the inks, this protects the inks and thus provides the protection that is often required in the packaging sector. According to PANTONE, the new inks offer
According to PANTONE, the inks used to produce these inks (if my memory serves me well, from Sun Chemical) are somewhat more expensive, but are also suitable for a wide range of aqueous and UV coatings.
After having implemented the new PANTONE colours in our proofing system over the past few days via a difficult update from Fiery XF, we noticed that the new Metallics colours were still missing.
Currently, the PANTONE Metallics colours for packaging printing are not yet supported by Fiery XF, and there are no plans to support them, according to Fiery Support. For us an incomprehensible decision. Admittedly, metallic colours cannot be reproduced in the proof anyway, as only the colour but not the metallic gloss can be reproduced. For us as a service provider, however, this decision by EFI means that we – when customers order proofs with Premium Metallics colours – have to create them manually with LAB values in the job, because our proofing software will not recognise all current PANTONE colours, but will mark them as unknown special colours and refuse the proof.
Since the current PANTONE V4 colour palettes can only be integrated into the Adobe product palettes with considerable effort on the part of the users, it is not quite clear to me whether the lack of colours in Fiery is due to a profit-driven, ostentatious PANTONE licensing policy or a miserly, ostentatious EFI product policy. However, be sure:
We at proof.de will provide the service and also offer these colours for the proof. We owe this to our customers.
The “ISO/IEC 15416:2016 – Information technology – Automatic identification and data capture methods – Test specifications for bar code print quality – Linear symbols” specifies the current criteria for testing bar codes. ISO 15416:2016 replaces ISO 15416:2000 and defines modified bar code quality calculations for some areas. During the barcode check by Proof GmbH, barcodes are checked according to the current criteria of ISO 15416:2016.
The new calculation methods lead in some cases to a higher averaged score for the barcode compared to the method described in ISO 15416:2000.
We have also updated our REA TransWin 32 evaluation software to the latest version and also provided our barcode checking device with a firmware update.
Order Barcode Checks for EAN13 and EAN8 Codes in our Proof Shop
The new CMYK exchange colour space eciCMYK v2 (FOGRA59) is the successor of eciCMYK (FOGRA53) from 2017. The new “V2” profile is based on the revised characterisation file FOGRA59. For the same colour space, the new profile offers a significantly modified and improved grey axis, which now contains the familiar cyan, magenta and yellow components from classic printing processes. Thus eciCMYK v2 offers a further advantage besides a large colour space and proofability. Practical tests with various digital printing systems have shown that, in addition to the conversion from “ISO Coated v2” to “PSO Coated v3” data, the assignment of the new CMYK exchange colour space profile also enables improved output on digital printing systems with a larger colour space: the printed image appears richer in contrast, with brighter colours. The icc-profile “eciCMYK_v2.icc” can be downloaded from the ECI in the download section.
Proofs in the eciCMYK_v2 colour space can now be ordered in the shop at Proof.de.
We have recently started offering DeviceLink colour conversions via DeviceLinks made by ColorLogic from numerous RGB and CMYK standards into other CMYK standards from offset and gravure printing.
The colour conversion profiles preserve the separation structure, limit the total colour application for the selected printing standard and maintain the purity of the primary and secondary colours. They ensure smooth transitions in gradients and enable correct conversion of PDF and PDF/X data. Separation-preserving conversion ensures that pure grey tones are not built up into four colours and that duplex tones (black+primary colour) and triplex tones (black+secondary colour) remain pure, while still being colour-metrically transformed in the best possible way. In addition, the colour impression of the source colour space is optimally preserved in the target colour space by taking into account both paper colouration and dot gain.
For current printing standards of ISO, Fogra, ECI, Ifra, Gravure (PSR), Gracol, Swop, SNAP, these profiles ensure a targeted limitation of the maximum ink application without completely new separation. This reliably prevents problems with set-off and improves the drying behaviour. These profiles are suitable if the data is generally already in the desired colour space, but individual images or objects have too much ink application.
You can order the Devicelink PDF colour conversions for advertisements here
Today we updated our chat software Livezilla Pro to offer you even more comfort and speed in the chat. Simply contact us directly via chat … a lot of minor details or brief queries can be dealt with quickly and conveniently.
In addition to security updates and performance improvements, the chats should now be even more reliable in every possible browser and PC combination. Uploading and downloading files such as screenshots in the chat history should also be improved.
A word about data protection: We don’t use any supposedly free chat solutions based in Las Vegas, we care about the protection of your data and your anonymity in the chat:
So please don’t be surprised if you already have an order in your shopping cart and then start a chat with us, that we neither see who you are nor what you want to order from us. We only chat with “Guest 0288” or “Guest 6452″… only if you tell us your order number or your name, you will be “recognisable” as a person or company in the chat.
ISO Coated v2 (ECI) / ISO Coated v2 300% (ECI)
Profile: ISOcoated_v2_eci.icc
Standard for glossy and matte coated paper
Paper: Types 1 and 2, gloss and matte coated
Tone value increase curves A (CMY) and B (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA39L
ISOUncoated
Profile: ISOUncoated.icc
Standard for uncoated white natural paper
Paper: paper grade 4, uncoated white offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA29L
PSOCoatedV3 / Fogra 51
Profile: PSOcoated_v3.icc
The successor of ISOCoatedV2 for glossy and matte coated paper with moderate optical brighteners
Paper: paper type 1, glossy and matte coated paper with moderate optical brighteners (8-14 DeltaB according to ISO 15397)
Tone value increase curve A (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=95;1,5;-6
Characterisation Data: Fogra51 / Fogra 51 Spectral (M1)
PSOuncoated_v3 / Fogra 52
Profile: PSOuncoated_v3_FOGRA52.icc
The successor of PSOUncoated for uncoated, wood-free natural paper with many optical brighteners
Paper: Paper type 5, wood-free uncoated, with high OBAs (more than 14 DeltaB according to ISO 15397)
Tonal value increase curves C (CMYK) according to ISO 12647-2:2013
Paper white: CIELAB=93.5;2.5;-10
Characterisation Data: PresumablyFogra52L (M1)
PSO Uncoated ISO12647 (ECI)
Profile: PSO_Uncoated_ISO12647_eci.icc
The successor of ISOUncoated
Paper: Type 4, uncoated white offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA47L
PSO LWC Improved (ECI)
Profile: PSO_LWC_Improved_eci.icc
Improved LWC paper, glossy coated, successor of ISO Web Coated
Paper: Paper type 3, improved gloss coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA45L
PSO LWC Standard (ECI)
Profile: PSO_LWC_Standard_eci.icc
LWC paper standard, glossy coated
Paper: Paper type 3, standard glossy coated (LWC)
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA46L
ISO Web Coated
Profile: ISOwebcoated.icc
LWC paper standard, glossy
Paper: Paper grade 3, standard glossy coated (LWC), dot gain curves B (CMY) and C (K) from ISO 12647-2: 2004
Characterisation Data: FOGRA28L
ISO Uncoated Yellowish
Profile: ISOuncoatedyellowish.icc
Uncoated natural paper slightly yellowish (chamois)
Paper: Type 5, uncoated yellowish offset
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA30L
SC Paper (ECI)
Profile: SC_paper_eci.icc
Paper: SC (Super Calendered) Paper
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA40L
PSO SC-B Paper v3
Profile: PSOsc-b_paper_v3_FOGRA54.icc
SC-B Paper, Super calendered Papier, satin-finished
Paper: Commercial offset, SC-B paper (super-calendered, satin), printing condition PC6
Tone value increase curve 2013-B, white measurement base.
Characterisation Data: FOGRA54
PSO MFC Paper (ECI)
Profile: PSO_MFC_paper_eci.icc
Paper: MFC, Machine finished coating
Tone value increase curves B (CMY) and C (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA41L
PSO SNP Paper (ECI)
Profile: PSO_SNP_paper_eci.icc
Newsprint
Paper: SNP, Standard newsprint, heatset web offset printing
Tone value increase curves C (CMY) and D (K) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA42L
WAN-IFRAnewspaper 26v5
Profile: WAN-IFRAnewspaper26v5.icc
Colour space: Primary and secondary colours according to ISO 12647-3: 2013
Dot gain: 26%
Maximum paint application: 220%
Maximum GCR: Long black with an early black start
ISONewspaper 26v4
Profile: ISONewspaper26v4.icc
Newspaper
Paper: paper type SNP, standard newsprint, heatset web offset, dot gain curves C (CMY) and D (K) from ISO 12647-2: 2004
Characterisation Data: IFRA26
PSO Coated NPscreen ISO12647 (ECI)
Profile: PSO_Coated_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: Paper types 1 and 2, glossy and matt coated paper, non-periodic screen (NPscreen), 20 µm,
Tone value increase curve F (CMYK) from ISO 12647-2:2004
Characterisation Data: FOGRA43L
PSO Coated 300% NPscreen ISO12647 (ECI)
Profile: PSO_Coated_300_NPscreen_ISO12647_eci.icc
glossy and matte coated paper, FM screen
Paper: type 1 and 2, gloss and matte coated
non-periodic screening (NPscreen), 20 μm
Tone value increase curve F (CMYK) as defined in ISO12647-2:2004
Characterisation Data: FOGRA43L
PSO Uncoated NPscreen ISO12647 (ECI)
Profile: PSO_Uncoated_NPscreen_ISO12647_eci.icc
Uncoated white natural paper, non-periodic screening (NPscreen), 30 μm
Paper: type 4, uncoated white offset
Tone value increase curve F (CMYK) as defined in ISO 12647-2:2004
Characterisation Data: FOGRA44L
Improved Newsprint, INP / PSO INP Paper (ECI)
Profile: PSO_INP_Paper_eci.icc
Commercial and specialty offset, INP paper (improved news print), positive plates
Paper: improved newsprint
Tone value increase curves C (CMY) and D (K), white measurement base
Characterisation Data: FOGRA48L
PSO Coated v2 300% Glossy laminate (ECI)
Profile: PSO_Coated_v2_300_Glossy_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent gloss foil lamination (typical OPP gloss foil 12-15 μm), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching gloss finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA50L
PSO Coated v2 300% Matte laminate (ECI)
Profile: PSO_Coated_v2_300_Matte_laminate_eci.icc
Commercial offset printing, positive copy, AM screen with 60-80 lines/cm, with subsequent matt film lamination (typical OPP matt film 15 μm with medium opacity ~70%, i.e. brightening ΔL* = 6 on black solid tone after finishing), white measurement base.
The profile is consistent with the old profiles ISOcoated_v2_eci.icc and ISOcoated_v2_300_eci.icc and shows the matching matt-finished result.
Tone value increase curves A (CMY) and B (K) according to ISO 12647-2:2004
Characterisation Data: FOGRA49L
PSO Coated v3 Matte laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Matte_laminate.icc
The ECI offset profile PSO_Coated_v3_Matte_ laminate.icc is based on the characterization data set “FOGRA56.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with matte film (typical OPP matte film 15 μm with average opacity ~70%, i. e. brightening by ΔL* = 6 on the black solid after lamination), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA56.txt
PSO Coated v3 Glossy laminate (ECI) New 2020!
Profile: PSO_Coated_v3_Glossy_laminate.icc
The ECI offset profile PSO_Coated_v3_Glossy_ laminate.icc is based on the characterization data set “FOGRA57.txt” applicable to the following reference printing condition according to the international standard ISO 12647-2:2013: Commercial and specialty offset, Premium coated paper, tone value increase curve 2013-A, after lamination with glossy film (typical OPP glossy film 12–15 μm), white backing.
The profile is consistent with the profile PSOcoated_v3.icc and shows the corresponding glossy laminated result. The profile was created using the Heidelberg Color Toolbox 2019 with the following settings: black length 9 (starting point 10%), black width 10, total dot area 300%, maximum black 96%.
Characterisation Data: FOGRA57.txt
eciCMYK (Fogra 53) – CMYK exchange colour space
Profile: eciCMYK.icc
FOGRA53 is a CMYK exchange colour space and is used for colour communication in print production.
eciCMYK_v2 (Fogra 59) – CMYK exchange colour space New 2020!
Profile: eciCMYK_v2.icc
eciCMYK_v2 (Fogra 59) is the successor of eciCMYK (Fogra 53).
Heaven42
The absolute white tone opens up the greatest scope of colours for design and printing afforded by any coated paper worldwide. The perfect foundation for extreme contrasts and combination with ultra white natural papers. The absolutely white paper shade of heaven 42 impacts on the printing process as well as on the pre-press stage. With the same colouring and dot gain, the printed image can look significantly colder if separation remains unchanged (e.g. with
ICC-profile “IsoCoated_v2”).
We proof Heaven42 on proof paper with optical brighteners and measure the Proof in M1 Standard. Please note: Our Heaven42 proofs represent a good simulation of the original Heaven42 ICC Profile, but are not – as an ISOcoatedv2 Proof – colouraccurate and legally binding.
Scheufelen offers two ICC-Profiles for download, we proof the colour profile of Heidelberger Druck (“_HD”).
Profile: Heaven42_AM_U280_K98_G80_HD.icc (Heidelberger Druck)
Ink Coverage: ~280 % (U)
Black: GCR , 80 % (G)
Black Generation: 98 % (K)
Proofpaper: EFI Proof Paper 8245 OBA Semimatt
Characterisation Data: Made from Reference Data
Measuring method: M1 with optical brighteners (OBAs)
PaC.Space
Profile: PaC.Space_CMYK_gravure_V1a.icc
PaC.Space is the first common color standard for packaging gravure printing, which enables to process an interface from the supplied prepress data or printer-specific requirements.
Paper: Coated substrates and films for packaging gravure
Characterisation Data: FOGRA_PaCSpace_MKCheck11
ECI Rotogravure profiles for the Process Standard Rotogravure (PSR)
PSR LWC Plus V2 M1 v2 (2019)
Profile: PSR_LWC_PLUS_V2_M1_v2.icc
The Successor of PSR LWC Plus V2 (PSR_LWC_PLUS_V2_PT.icc)
Paper: Roll gravure, LWCplus glossy coated
Measuring base: unprinted LWCplus paper
Characterisation Data: PSR_LWC_PLUS_V2_M1
PSR LWC Plus V2 (2009)
Profile: PSR_LWC_PLUS_V2_PT.icc
The successor of HWC
Paper: Improved LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_PLUS_V2
PSR LWC Standard V2 M1 (2019)
Profile: PSR_LWC_STD_V2_M1.icc
The successor of PSR LWC Standard V2
Paper: Rotogravure, LWC
Measuring base: unprinted LWC paper (self backing)
Charakterisierungsdaten: SR_LWC_STD_V2_M1
PSR LWC Standard V2 (2009)
Profile: PSR_LWC_STD_V2_PT.icc
Paper: LWC (light weight coated) paper
Characterisation Data: ECI_PSR_LWC_STD_V2
PSR SC Plus V2 M1 (2019)
Profile: PSR_SC_PLUS_V2_M1.icc
The successor of PSR SC Plus V2
Paper: Rotogravure, SC Plus
Measuring base: Unprinted SC Plus paper
Characterisation Data: PSR_SC_Plus_V2_M1
PSR SC Plus V2 (2009)
Profile: PSR_SC_PLUS_V2_PT.icc
Paper: whiter super calandered paper
Characterisation Data: ECI_PSR_SC_Plus_V2
PSR SC Standard V2 M1 (2019)
Profile: PSR_SC_STD_V2_M1.icc
The successor of PSR SC Standard V2
Paper: Roll gravure, SC paper
Measurement document: Unprinted SC paper
Characterisation Data: PSR_SC_STD_V2_M1
PSR SC Standard V2 (2009)
Profile: PSR_SC_STD_V2_PT.icc
Paper: super calandered paper
Characterisation Data: ECI_PSR_SC_STD_V2
PSR MF V2 M1 (2019)
Profile: PSR_MF_V2_M1.icc
Paper: Rotogravure, paper type MF or INP, 55 g/m2
Measuring base: unprinted MF or INP paper
Characterisation Data: PSR_MF_V2_M1
PSR News Plus
Profile: PSRgravureMF.icc
PSRgravureMF is now reffered to as News Plus
Paper: Paper News Plus
Characterisation Data: PSRgravureMF_ECI2002
GRACoL2006_Coated1v2
Profile: GRACoL2006_Coated1v2.icc
GRACol interpretation of ISO 12647-2.
Paper: Type 1 and 2, glossy and matt coated paper
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: GRACoL2006_Coated1, a derivation from Fogra 39
SWOP2006_Coated3v2
Profile: SWOP2006_Coated3v2
SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper.
Paper: Thin, coated paper
Tonwertzunahmekurven: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated3, a derivative of Adobe USWebCoated v2
SWOP2006_Coated5v2
Profile: SWOP2006_Coated5v2
Other SWOP interpretation of ISO12647-2 for web offset printing on thin coated paper
Paper: Thin, coated paper with a slightly different white tone to SWOP2006_Coated3V2
Dot gain curves: NPDC (Neutral Print Density Curves)
Characterisation Data: SWOP2006_Coated5, a derivative of Adobe USWebCoated v2
Japan Color 2011 Coated
Profile: JapanColor2011Coated.icc
The new standard of Japan Printing Machinery Association (JPMA).
Characterisation Data: JapanColor
Japan Color 2001 Coated
Profile: JapanColor2001Coated.icc
Printing process definition: ISO 12647-2:1996, sheet-fed offset printing, positive plates
Paper: Type 1, (coated, 105 gsm), screen frequency 69/cm.
SWOP 2013 C3
Profile: SWOP2013_CRPC5.icc or SWOP2013C3-CPRC5.icc
The profile is measured in M1 mode in consideration of optical brighteners and is printed on proofing papers with optical brighteners.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: Grade #3 paper
Characterisation Data: CGATS21-2-CRPC5
GRACoL 2013 Uncoated
Profile: GRACoL2013UNC_CRPC3.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 260%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC3
GRACoL 2013
Profile: GRACoL2013_CRPC6.icc
The profile is being measured in M1 Mode taking into account the Optical Brightening Agents in the paper.
TAC: 320%
GCR: Medium+
Max K: 100%
TVI: CMY 16%, K19,1%
Paper: N.N.
Characterisation Data: CGATS21-2-CRPC6
With the proof standards Fogra49 and Fogra50 for the first time a proof standard was created that is not binding for printing. Why?
Fogra49 and Fogra50 describe two colour spaces as they are created by foil lamination not after printing but after printing and finishing.
Print finishing plays an increasingly important role in the further processing of printed matter. The application of a printing varnish, for example, is nowadays usually done directly during the printing process, e.g. with dispersion varnish in a 5th inking unit. The print image is usually only slightly changed in the process: An dispersion varnish, for example, results in a dot gain of 2-3 percent, a UV varnish up to around 5-7 percent. In contrast, foil lamination with OPP foil has a much stronger (more…)
Im Jahr 2010 stand eine der zentralen Neuerungen im Hause Pantone für Grafiker, Dienstleister und Druckereien an: Die Pantone Palette wurde um zahlreiche Farben erweitert und bekam einen neuen Namen: Pantone Plus
Die Erweiterung um 560 Farben erfolgte in zwei Schritten:
Im Jahr 2010 wurde die Pantone Palette um 224 Farben erweitert, die in der Pantone Nomenglatur die Farbnamen von 7548 bis 7771 tragen. Alle neuen Farben konnten weiter in der Druckerei mit bisherigen 14 Pantone Basisfarben angemischt werden.
Im Jahr 2012 wurde die Pantone Plus Palette um weitere 336 Farben erweitert, die in der Pantone Nomenglatur die Farbnamen von 2001 bis 2336 tragen. Damit diese Farben erzielt werden können, wurden die bisherigen 14 Pantone Basisfarben um 4 neue Farben auf insgesamt 18 Basisfarben erweitert. Die neuen, aus der Pantone GOE Palette entlehnten Farben sind:
Diese Änderungen wurden ungeschickterweise von Pantone nur sehr ungenügend kommuniziert. Ein typisches Beispiel zeigt ein Screenshot vom 08. November 2013: Auf der deutschen und der englischen Pantone Seite werden zwei völlig (more…)
Recently we received a PDF file from a Swiss customer who asked us to proof it according to ISOCoatedV2. The format was PDFX-4, we could open the file, preflight it and also display it in Acrobat. However, when proofing in Fiery XF 5.2, the file was only output after a RIP time of over 3 hours.
Adobe PDF X4 screen output in Acrobat Professional
We have recorded the screen layout on a modern Macbook Pro with four processor cores and the latest Acrobat Pro version to illustrate the enormous demands on computing power.
It was clear from the screen layout that the RIP time would be quite long, but three hours with just one use was quite unusual, especially since in our RIP two instances of the Adobe PDF Print Engine work simultaneously. Where exactly the error lies in the extremely high RIP time is not yet clear. Both EFI, as the manufacturer of the Fiery RIPS, and Adobe, as the manufacturer of the PDF Print Engine (APPE), have been given the information that on a Harlequin RIP the file was probably ripped within a few minutes. So a bug in the Adobe PDF Print Engine might also be a reason for the long processing time.
It’ s a typical problem. From creation programs such as InDesign and Illustrator, the flattening of file elements with X/4 is passed on to the RIP in the print shop or proof printer.
The case in question was calculated on a quad-core system with SSDs with two instances of the Adobe PDF Print Engine and output correctly for three hours 47 minutes. However, since the final product cover is not expected to be produced in Europe, but in Asia, it was decided to break down the complex graphics with transparencies, drop shadows, etc. in Photoshop and then reuse it as a transparent PSD file. The resulting PDF X/3 file was ripped and proofed within seconds. The colour result was identical to the X4 file.
This example shows: PDF X4 is not just a modified data format. It also shifts the computing power and software requirements from the data creator to the data processor or printing house. But especially with complex graphics this can lead to unpredictable effects. Although PDF X/4-capable solutions such as Fiery XF 5.2 do exist today, a RIP time of over three hours is of course not practical.
With the new SpectroProofer ILS30 made by X-Rite, Proof GmbH has created the basis for automated measurements and Proof verifications according to M1 standard. Proofs with optical brighteners (OBAs – Optical Brightning Agents) can now be measured. Contrary to earlier announcements, the new SpectroProofer are also able to measure the current proofing standards as before in M0 measurement standard.
Because of the new ILS30 SpectroProofer, the layout of the Ugra / Fogra media wedge was slightly modified. For a comparison between old and new media wedge, see the image below.
We received a call from a new customer today: He proofs for Chinese suppliers, and up to now he is producing proofs in Japan Color 2001 Coated (JapanColor2001Coated.icc). We had not yet set up the profile in our RIP, but within a short time we were able to load the profile into our RIP, create workflows, and make the profile available for order in the shop.
We proof more than 50 international proof standards, but there are always one or two standards that we do not yet offer. Often ink manufacturers or paper producers also offer ICC profiles like Aniva or Heaven42 and the Munken, Amber and Arctic paper series from Arctic Paper. Or have you measured a house standard for your printing parameters which you would like to use for proofs? Then please contact us. We will be happy to support you.
A few days ago we received a call from a customer in the field of design, who sent open Adobe InDesign data in ISOCoatedV2 300% with contained RGB images to the production company for a complex CD production on the advice of the producing company (“The printing company still has a prepress stage, which can then prepare your data optimally…”). The result of the finished printed CD booklets and inlays did not correspond at all to the calibrated monitor image of our customer, the client was also unhappy and requested the print data about the production company from the print shop responsible for the print to troubleshoot. Data in the “US Web Coated” color space with 350% ink coverage came back from the printer. For troubleshooting, the customer then had a proof of his data created by us, but had chosen the settings “Convert to target profile (retain values)” as usual when writing the proof PDF; we thus received completely CMYK data, of which we produced a proof according to ISOCoatedV2 300%, which completely met our customer’s expectations. So it seems that the designer created the data correctly and printed the print shop incorrectly.
On closer inspection, our error analysis revealed two serious weaknesses:
In this case, a complaint of the designer to the printing company will of course be difficult, as on the one hand, non-profiled RGB data were sent to the production company, and on the other hand, no print PDF generated by the data creator in the correct output color space ISOCoatedV2 300% was supplied.
If this had been done, one could at least have argued that the expected color of the production print would have been comprehensively known. Thus, one can only refer to the fact that the printer would have had to ask the designer for RGB data without an embedded color profile, and should not have assigned the data somehow to a profile “blindly”. The fact that the print shop with its crude US Web Coated workflow certainly did not create a correct print file, but a wrong one for the output, can indeed be stated, but the print shop can always talk its way out to “systems with in-house standard”.
If we receive a PDF file that contains RGB images, the next step is to check if the file is a valid PDF/X-3 or PDF/X-4. If this is the case, we check whether all input RGB profiles are correctly marked with color space (sRGB / AdobeRGB / ECI-RGB-V2 etc.) and rendering intent, then we check whether the correct output color space was used as output intent and whether also contained CMYK data have the correct input profiles. If yes, then we proof the file with the settings: “Consider all input and output color spaces”.
In this case, the file is reproduced 100% exactly as our customer created and defined the color profiles. If he has made a mistake and e.g. marked an image with a wrong RGB profile, this will also be “incorrectly proofed” exactly as correctly.
If RGB data should not contain a profile, e.g. if they are created in Device RGB, we generate a “data incorrect” e-mail in which we explain our procedure as follows:
“Dear customer, the data check has shown that RGB elements are contained in your data. RGB elements can only be safely interpreted in the proof if they are marked with a color profile and a rendering intent. This is the case, for example, with correct PDF/X-3 and PDF/X-4 data. The correct output intent must also be specified.
At least one of these criteria does not seem to be the case for your file. The safest way would be to convert the contained RGB data to CMYK. This has the advantage that you have control over the conversion and can view the CMYK result again in Acrobat before uploading the file again for proofing. We can then reliably use your CMYK values for the proof. To do this, call up the current order in your customer account, delete the incorrect data and upload the corrected data.
If, for example, the RGB element should only be a small image that is not relevant for the overall impression of the proof, or if you do not have another file available for the proof, then of course we can also use your RGB data for the proof. If available, we use your RGB source profiles and rendering intents, otherwise we use the sRGB standard and the rendering intent “relatively colorimetric with depth compensation”, which in most cases will lead to correct proof results. If you would like us to proof the supplied RGB data in this way, please let us know. Please do not hesitate to contact us if you have any questions. Best regards, your proofing team”.
In our case, the CD production case would also not have occurred in the proof, as we reject RGB data not provided with an ICC profile with the error message mentioned above, and do not convert them, as we cannot predict precisely how our customer would have liked the data to be converted.
We are aware that our approach is not 100% the ultimate best approach in all cases, but to the best of our knowledge and belief it is best in line with market practice and the expectations of our customers.
However, we are also happy to accept your individual requirements and circumstances. Give us a call or send us an email and describe your processing requirements.
By the way: We are happy to put our knowledge and data competence at your service: If you also have a problem, a question about print data, data preparation, or – as in the above example – a misprint has already occurred and you need external expertise and assistance for the complaint: Give us a call. We will be happy to advise you and help you where we can help. We will charge you for our advice and analysis at an hourly rate of EUR 90,- plus VAT, and you will be billed for 15 minutes each. An initial consultation and assessment is of course free of charge.
A few days ago, our DIN SPEC 16699 “Open Colour Communication” was published and is now available for free download from DIN’s Beuth-Verlag.
Matthias Betz from Proof GmbH, Holger Everding from DTP Studio Oldenburg, Jan-Peter Homann from Homann Colormanagement in Berlin and Eric. A Soder from Pixsource in Switzerland, all members of the association freieFarbe e.V., have shown in the bilingual DIN specification a way to create high-precision color samples on the basis of open source, license-free standards and have shown ways for cross-media color communication.
The 44-page PDF is bilingual in German and English and can be ordered directly from Beuth Verlag, which distributes the DIN standards in Germany, and downloaded free of charge after a short registration.
DIN SPEC 16699 Open Colour Communication
We produce proofs for classic white uncoated papers on a daily basis, but the question often arises as to which proof standard could be used for printing on recycled paper.
In general, the paper white in a proof is precisely defined in the proof standard and is also measured in every test report.
For PSOUncoated it is 95.00 / 0.00 / -2.00 in CIELAB and for PSOUncoatedV3 it is 93.50 / 2.50 / -10.00, i.e. slightly darker (93.50 instead of 95.00 for brightness L) and significantly bluer (-10.00 instead of -2.00 on the B axis, i.e. the blue-yellow axis in the blue direction).
Recycling papers differ not only greatly from type to type in the area of paper white, but even from batch to batch. So if a printing company orders the same recycling paper in January and in February, the paper mill may well deliver a slightly different white value of the paper, as the paper white of course depends strongly on the recycled paper qualities used for production.
A colour-binding proof for recycling paper is therefore not possible, as no standard has ever been worked out due to the different paper qualities and white tones.
It is recommended for the proof to choose a classic proof standard such as PSOUncoated / Fogra 47, which shows a rather neutral, unbrightened paper white in the proof. Place one side of the recycled paper next to the proof and mentally transfer the colour of the proof to the white tone of your recycled paper. This way you can imagine the later printing result quite well.
We spectrally measured the paper white tone and the proportion of optical brighteners of over 1,000 papers of the most important paper manufacturers such as Berberich and Papier Union as well as online printing companies such as Flyeralarm and wir-machen-druck.de.
Only a few paper manufacturers currently publish data on paper whiteness and the proportion of optical brighteners in their papers, but only technical indicators such as whiteness according to ISO 2470-2 or CIE ISO 11475. However, designers can hardly record paper whiteness with these values. In addition, it is not possible to read from these data whether and what proportion of optical brighteners the paper has.
Example above: Spectral data comparison of Antalis Coqueror CX 22 white for the measurement standards M0 and M1. Below you can also see the color deviation in Delta-E00 of 1.97 and the two paper white values in LAB and LCH.
Left: CGATS.17 Data for measurement conditions M1 and M0 for paper Antalis Conqueror CX 22 white
We have therefore measured the most important papers and dyes of all central paper producers and paper distributors as well as online printers in the three measurement standards M0, M1 and M2. From the difference in the paper whiteness of the two measurements M2 (UV cut without UV portion) and M1 (ISO 3664:2009 with noticeable UV portion), we determined the color distance on the yellow-blue axis of LAB in Delta-b and derived from this the proportion of optical brighteners according to Delta-B according to ISO 15397 and evaluated it.
Delta-B < 1 = faint OBA
Delta-B < 4 = little OBA
Delta-B < 8 = low OBA
Delta-B < 14 = moderate OBA
Delta-B > 14 = high OBA
Parallel to the images of the spectra, we have also provided spectral data in CGATS format for the measurement modes M0, M1 and M2, which can be downloaded for any paper. These values can be used, for example, in proofing software to calculate a paper white simulation for a specific production paper.
Throughout Germany shipping costs for packages from Proof A3 were reduced to only 9,-€.
In international shipping, costs were partially reduced by almost 50%. Proofs can now be sent quickly and conveniently wordwide. shipping costs and options are directly calculated in the shop so that a quick and direct proof order is possible. Express delivery in the EU is now from 35, – €, Switzerland and the United States from only 45, – €. Even for Afghanistan and Nigeria, shipping costs for DIN A0 proofs are only 75, – €. In international express, delivery time is between one to four days…
The exact prices and per country can be seen here:
Countries and shipping cost for proofing on shop.proof.de
Please note: Express delivery and standard delivery to countries in located in different shipping zones. So the standard shipping in the US through DHL is nearly as “expensive”, as the express delivery. So express delivery for only 10 Euro more certainly is the more attractive option for time-critical goods such proofs.
Today, modern proofing machines have up to 12 different printing colours and, in addition to the classic primary colours, also have, for example, orange and green and violet as real colour pigments in the machine. Proof printers such as the Epson SureColor P9000V are therefore capable of displaying significantly larger color spaces than, for example, ISOCoatedV2. The spot color simulation in these devices is therefore sometimes very good when controlled via a Contone driver, which can access the entire color space of the proof printer. Epson himself points out, for example, that “98% of all Pantone colors” can be covered. This may be doubted, but a number of over 90% of all Pantone colors is realistic from our point of view.
In the past, Pantone and HKS colors were simply converted by the proofing systems to CMYK and then simulated in the standard color space, i.e. mostly ISOCoatedV2. The representation of the colors here is mostly completely insufficient. For the reproduction of Pantone and HKS colours in a proof it is therefore immensely important to have a modern proof printer with many colours and a high colour gamut and a modern proofing software which is also able to precisely control the printed gamut.
Differences in the quality of the simulation of spot colors can quickly be seen in the different printing systems: If the proofing service provider prints with an older 6-color or 8-color system (Cyan, Light Cyan, Magenta, Light Magenta, Yellow and Black or Light Black), spot colors are simulated worse than, for example, with a modern 11-color system with Cyan, Light Cyan, Orange, Yellow, Magenta, Light Magenta, Photo Black, Matte Black, Light Black, Light light Black and Green.
The higher simulation quality of the spot colors is generated by the fact that orange, for example, already exists as a separate color and does not have to be mixed from magenta and yellow before the spot color simulation.
Of course, it must be said that there are limits, especially in the area of metallic or fluorescent colours; these colours are currently not reproducible in proofing.
The spot-colour simulation of gradations is also critical
In most proofing systems, only the 100% values of a Pantone or HKS color are underlaid. If, for example, a font logo with 100% color application of a Pantone color is to be simulated, this is precise and is well represented in most proofing systems.
However, it becomes more difficult if the logo contains not only 100% areas but also a 30% Pantone colour area, since this is not defined in the proofing system, but is simulated by the proofing system. In some cases, considerable deviations from e.g. HKS colour fans can be observed.
It becomes even more difficult if, for example, a grayscale TIFF lies on a 100% HKS area and overprints. For the graphic professional it is immediately comprehensible that the HKS surface simply has to become correspondingly darker at this point due to an overprinting 30% black. However, the proofing software must recognize this effect correctly, calculate it correctly and then simulate it correctly with the 11 colors available from the proof printer. It is easy to understand that countless errors can occur. And the supreme discipline: 7-colour Pantone files with lots of overlaying and overprinting Pantone colours or HKS colours with overprinting CMYK elements can at best be calculated even by the most modern proofing systems, but can by no means be colour-accurately simulated.
The bad news is that a proof with spot colors is therefore never as color-binding according to the current state of the art and varies more depending on the proofing system.
But the good news is that spot colors, especially solid colors, can now be simulated well by modern proofing systems. A modern proofing system therefore also offers the possibility of getting a realistic impression of spot color prints at a fraction of the cost of a test print on a offset press.
This year we have again submitted proofs for Fogra certification. We thus prove that we not only deliver outstanding proof quality through internal quality controls and checks, but that the quality of our proofs is also confirmed by an external body. We have therefore had proofs certified for the seventh year in succession.
In 2019 we have made two innovations in Fogra certification.
The quality of our prints and our spot colour reproduction of the PANTONE colours was confirmed by Fogra for all four proof standards.
The complete 14-page Fogra test report can be downloaded here.
These new certifications have been implemented on the current software revision Fiery XF 7.1.3 and have been applied to the papers EFI Gravure Proof Paper 4245 Semimatt, EFI Proof Paper 8245OBA Semimatt and EFI Proof Paper 8175OBA Matt.
After the association freieFarbe e.V. had met last year in Tübingen for their annual general meeting, this year we met in a rustic hut in the Appenzeller Land, which Peter Jäger from pre2media and Eric A. Soder from pixsource.com had excellently chosen, just like the sunny weather that should accompany us from Friday to Sunday.
The chairman of the association, Holger Everding from DTP Studio Oldenburg and Jan-Peter Homann from Homann Colormanagement in Berlin arrived in Tübingen on Thursday, and after a first long night full of discussions and a meeting in the Proof.de office on Friday morning around noon, the three of us continued our journey to Switzerland. After a joint dinner with Peter Jäger and Eric A. Soder (from Tübingen, we had taken some Swabian potato salad and my handmade Maultaschen with us the evening before), an evening full of planning and a strategy workshop for the tasks and goals of the next year began. Without question, this evening was also spent discussing, developing, laughing and working creatively until late into the night between Flensburger Pils, Swiss mountain beer and wine in attractive red and light yellow shades.
After breakfast, we continued on Saturday to swissQprint, where we had the opportunity to learn more about the status quo of large format digital printing from association member Guy Flüeli, as well as visit the production facilities and conduct print tests on the Karibu and other SwissQPrint presses.
In late 2019, Epson will present its new generation of proof printers: the Epson SureColor SC-P9500 and SC-P7500 proof printers.
Epson has incorporated many improvements into the new printer generation. For example, fully loaded print heads now work in the new printers, which can finally handle photo black, matt black and the two grey tones LightGray and LightLightGray as well as the colours orange, green and violet simultaneously in one print head. For cyan and magenta there are also the light variants light-cyan and light-magenta, so that besides yellow, cyan and magenta, 12 full colours are available in the print head. The printer uses the new UltraChrome Pro12 ink set, which could possibly bring some detail improvements to the classic K3 inks, although nothing more is known about this yet.
© 2021 – Proof GmbH
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Recent Comments